一般前置时间分布下两种需求类别的库存池和分配水平的计算效率优化

O. Vicil, P. Jackson
{"title":"一般前置时间分布下两种需求类别的库存池和分配水平的计算效率优化","authors":"O. Vicil, P. Jackson","doi":"10.1080/0740817X.2016.1146421","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article we develop a procedure for estimating service levels (fill rates) and for optimizing stock and threshold levels in a two-demand-class model managed based on a lot-for-lot replenishment policy and a static threshold allocation policy. We assume that the priority demand classes exhibit mutually independent, stationary, Poisson demand processes and non-zero order lead times that are independent and identically distributed. A key feature of the optimization routine is that it requires computation of the stationary distribution only once. There are two approaches extant in the literature for estimating the stationary distribution of the stock level process: a so-called single-cycle approach and an embedded Markov chain approach. Both approaches rely on constant lead times. We propose a third approach based on a Continuous-Time Markov Chain (CTMC) approach, solving it exactly for the case of exponentially distributed lead times. We prove that if the independence assumption of the embedded Markov chain approach is true, then the CTMC approach is exact for general lead time distributions as well. We evaluate all three approaches for a spectrum of lead time distributions and conclude that, although the independence assumption does not hold, both the CTMC and embedded Markov chain approaches perform well, dominating the single-cycle approach. The advantages of the CTMC approach are that it is several orders of magnitude less computationally complex than the embedded Markov chain approach and it can be extended in a straightforward fashion to three demand classes.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"955 - 974"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2016.1146421","citationCount":"19","resultStr":"{\"title\":\"Computationally efficient optimization of stock pooling and allocation levels for two-demand-classes under general lead time distributions\",\"authors\":\"O. Vicil, P. Jackson\",\"doi\":\"10.1080/0740817X.2016.1146421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this article we develop a procedure for estimating service levels (fill rates) and for optimizing stock and threshold levels in a two-demand-class model managed based on a lot-for-lot replenishment policy and a static threshold allocation policy. We assume that the priority demand classes exhibit mutually independent, stationary, Poisson demand processes and non-zero order lead times that are independent and identically distributed. A key feature of the optimization routine is that it requires computation of the stationary distribution only once. There are two approaches extant in the literature for estimating the stationary distribution of the stock level process: a so-called single-cycle approach and an embedded Markov chain approach. Both approaches rely on constant lead times. We propose a third approach based on a Continuous-Time Markov Chain (CTMC) approach, solving it exactly for the case of exponentially distributed lead times. We prove that if the independence assumption of the embedded Markov chain approach is true, then the CTMC approach is exact for general lead time distributions as well. We evaluate all three approaches for a spectrum of lead time distributions and conclude that, although the independence assumption does not hold, both the CTMC and embedded Markov chain approaches perform well, dominating the single-cycle approach. The advantages of the CTMC approach are that it is several orders of magnitude less computationally complex than the embedded Markov chain approach and it can be extended in a straightforward fashion to three demand classes.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"48 1\",\"pages\":\"955 - 974\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2016.1146421\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2016.1146421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2016.1146421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在这篇文章中,我们开发了一个程序来估计服务水平(填充率)和优化库存和阈值水平在一个基于批对批补货策略和静态阈值分配策略管理的双需求类模型。我们假设优先级需求类别表现出相互独立,平稳的泊松需求过程和独立且分布相同的非零订单交货时间。优化程序的一个关键特征是它只需要计算一次平稳分布。文献中存在两种方法来估计库存水平过程的平稳分布:所谓的单循环方法和嵌入马尔可夫链方法。这两种方法都依赖于稳定的交货时间。我们提出了基于连续时间马尔可夫链(CTMC)方法的第三种方法,精确地解决了指数分布的交货时间的情况。我们证明了如果嵌入马尔可夫链方法的独立性假设成立,那么CTMC方法对于一般的提前期分布也是准确的。我们评估了所有三种方法的提前期分布谱,并得出结论,尽管独立性假设不成立,但CTMC和嵌入式马尔可夫链方法都表现良好,主导单循环方法。CTMC方法的优点是,它比嵌入式马尔可夫链方法的计算复杂性低几个数量级,并且可以以简单的方式扩展到三个需求类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computationally efficient optimization of stock pooling and allocation levels for two-demand-classes under general lead time distributions
ABSTRACT In this article we develop a procedure for estimating service levels (fill rates) and for optimizing stock and threshold levels in a two-demand-class model managed based on a lot-for-lot replenishment policy and a static threshold allocation policy. We assume that the priority demand classes exhibit mutually independent, stationary, Poisson demand processes and non-zero order lead times that are independent and identically distributed. A key feature of the optimization routine is that it requires computation of the stationary distribution only once. There are two approaches extant in the literature for estimating the stationary distribution of the stock level process: a so-called single-cycle approach and an embedded Markov chain approach. Both approaches rely on constant lead times. We propose a third approach based on a Continuous-Time Markov Chain (CTMC) approach, solving it exactly for the case of exponentially distributed lead times. We prove that if the independence assumption of the embedded Markov chain approach is true, then the CTMC approach is exact for general lead time distributions as well. We evaluate all three approaches for a spectrum of lead time distributions and conclude that, although the independence assumption does not hold, both the CTMC and embedded Markov chain approaches perform well, dominating the single-cycle approach. The advantages of the CTMC approach are that it is several orders of magnitude less computationally complex than the embedded Markov chain approach and it can be extended in a straightforward fashion to three demand classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1