不完全信息下的风险规避随机单位承诺

Ruiwei Jiang, Yongpei Guan, J. Watson
{"title":"不完全信息下的风险规避随机单位承诺","authors":"Ruiwei Jiang, Yongpei Guan, J. Watson","doi":"10.1080/0740817X.2016.1167287","DOIUrl":null,"url":null,"abstract":"ABSTRACT Due to the sustainable nature and stimulus plans from government, renewable energy (such as wind and solar) has been increasingly used in power systems. However, the intermittency of renewable energy creates challenges for power system operators to keep the systems reliable and cost-effective. In addition, information about renewable energy is usually incomplete. Instead of knowing the true probability distribution of the renewable energy course, only a set of historical data samples can be collected from the true (while ambiguous) distribution. In this article, we study two risk-averse stochastic unit commitment models with incomplete information: the first model being a chance-constrained unit commitment model and the second one a two-stage stochastic unit commitment model with recourse. Based on historical data on renewable energy, we construct a confidence set for the probability distribution of the renewable energy and propose data-driven stochastic unit commitment models to hedge against the incomplete nature of the information. Our models also ensure that, with a high probability, a large portion of renewable energy is utilized. Furthermore, we develop solution approaches to solve the models based on deriving strong valid inequalities and Benders’ decomposition algorithms. We show that the risk-averse behavior of both models decreases as more data samples are collected and eventually vanishes as the sample size goes to infinity. Finally, our case studies verify the effectiveness of our proposed models and solution approaches.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"838 - 854"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2016.1167287","citationCount":"13","resultStr":"{\"title\":\"Risk-averse stochastic unit commitment with incomplete information\",\"authors\":\"Ruiwei Jiang, Yongpei Guan, J. Watson\",\"doi\":\"10.1080/0740817X.2016.1167287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Due to the sustainable nature and stimulus plans from government, renewable energy (such as wind and solar) has been increasingly used in power systems. However, the intermittency of renewable energy creates challenges for power system operators to keep the systems reliable and cost-effective. In addition, information about renewable energy is usually incomplete. Instead of knowing the true probability distribution of the renewable energy course, only a set of historical data samples can be collected from the true (while ambiguous) distribution. In this article, we study two risk-averse stochastic unit commitment models with incomplete information: the first model being a chance-constrained unit commitment model and the second one a two-stage stochastic unit commitment model with recourse. Based on historical data on renewable energy, we construct a confidence set for the probability distribution of the renewable energy and propose data-driven stochastic unit commitment models to hedge against the incomplete nature of the information. Our models also ensure that, with a high probability, a large portion of renewable energy is utilized. Furthermore, we develop solution approaches to solve the models based on deriving strong valid inequalities and Benders’ decomposition algorithms. We show that the risk-averse behavior of both models decreases as more data samples are collected and eventually vanishes as the sample size goes to infinity. Finally, our case studies verify the effectiveness of our proposed models and solution approaches.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"48 1\",\"pages\":\"838 - 854\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2016.1167287\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2016.1167287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2016.1167287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

由于可持续性和政府的刺激计划,可再生能源(如风能和太阳能)在电力系统中的应用越来越多。然而,可再生能源的间歇性给电力系统运营商带来了挑战,以保持系统的可靠性和成本效益。此外,关于可再生能源的信息通常是不完整的。而不是知道可再生能源过程的真实概率分布,只能从真实(模糊)分布中收集一组历史数据样本。本文研究了两种不完全信息下的风险规避型随机单位承诺模型:第一种是机会约束型随机单位承诺模型,第二种是带追索权的两阶段随机单位承诺模型。基于可再生能源历史数据,构建了可再生能源概率分布的置信集,并提出了数据驱动的随机单元承诺模型,以对冲信息的不完全性。我们的模型还确保了很大一部分可再生能源很有可能被利用。此外,我们开发了基于推导强有效不等式和Benders分解算法的求解方法来求解模型。我们表明,两种模型的风险厌恶行为随着收集的数据样本的增加而减少,并最终随着样本量趋于无穷而消失。最后,我们的案例研究验证了我们提出的模型和解决方案方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Risk-averse stochastic unit commitment with incomplete information
ABSTRACT Due to the sustainable nature and stimulus plans from government, renewable energy (such as wind and solar) has been increasingly used in power systems. However, the intermittency of renewable energy creates challenges for power system operators to keep the systems reliable and cost-effective. In addition, information about renewable energy is usually incomplete. Instead of knowing the true probability distribution of the renewable energy course, only a set of historical data samples can be collected from the true (while ambiguous) distribution. In this article, we study two risk-averse stochastic unit commitment models with incomplete information: the first model being a chance-constrained unit commitment model and the second one a two-stage stochastic unit commitment model with recourse. Based on historical data on renewable energy, we construct a confidence set for the probability distribution of the renewable energy and propose data-driven stochastic unit commitment models to hedge against the incomplete nature of the information. Our models also ensure that, with a high probability, a large portion of renewable energy is utilized. Furthermore, we develop solution approaches to solve the models based on deriving strong valid inequalities and Benders’ decomposition algorithms. We show that the risk-averse behavior of both models decreases as more data samples are collected and eventually vanishes as the sample size goes to infinity. Finally, our case studies verify the effectiveness of our proposed models and solution approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1