SPSTS:使用标准化时间序列估计稳态平均值的顺序程序

C. Alexopoulos, D. Goldsman, Peng Tang, James R. Wilson
{"title":"SPSTS:使用标准化时间序列估计稳态平均值的顺序程序","authors":"C. Alexopoulos, D. Goldsman, Peng Tang, James R. Wilson","doi":"10.1080/0740817X.2016.1163443","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article presents SPSTS, an automated sequential procedure for computing point and Confidence-Interval (CI) estimators for the steady-state mean of a simulation-generated process subject to user-specified requirements for the CI coverage probability and relative half-length. SPSTS is the first sequential method based on Standardized Time Series (STS) area estimators of the steady-state variance parameter (i.e., the sum of covariances at all lags). Whereas its leading competitors rely on the method of batch means to remove bias due to the initial transient, estimate the variance parameter, and compute the CI, SPSTS relies on the signed areas corresponding to two orthonormal STS area variance estimators for these tasks. In successive stages of SPSTS, standard tests for normality and independence are applied to the signed areas to determine (i) the length of the warm-up period, and (ii) a batch size sufficient to ensure adequate convergence of the associated STS area variance estimators to their limiting chi-squared distributions. SPSTS's performance is compared experimentally with that of recent batch-means methods using selected test problems of varying degrees of difficulty. SPSTS performed comparatively well in terms of its average required sample size as well as the coverage and average half-length of the final CIs.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"864 - 880"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2016.1163443","citationCount":"13","resultStr":"{\"title\":\"SPSTS: A sequential procedure for estimating the steady-state mean using standardized time series\",\"authors\":\"C. Alexopoulos, D. Goldsman, Peng Tang, James R. Wilson\",\"doi\":\"10.1080/0740817X.2016.1163443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This article presents SPSTS, an automated sequential procedure for computing point and Confidence-Interval (CI) estimators for the steady-state mean of a simulation-generated process subject to user-specified requirements for the CI coverage probability and relative half-length. SPSTS is the first sequential method based on Standardized Time Series (STS) area estimators of the steady-state variance parameter (i.e., the sum of covariances at all lags). Whereas its leading competitors rely on the method of batch means to remove bias due to the initial transient, estimate the variance parameter, and compute the CI, SPSTS relies on the signed areas corresponding to two orthonormal STS area variance estimators for these tasks. In successive stages of SPSTS, standard tests for normality and independence are applied to the signed areas to determine (i) the length of the warm-up period, and (ii) a batch size sufficient to ensure adequate convergence of the associated STS area variance estimators to their limiting chi-squared distributions. SPSTS's performance is compared experimentally with that of recent batch-means methods using selected test problems of varying degrees of difficulty. SPSTS performed comparatively well in terms of its average required sample size as well as the coverage and average half-length of the final CIs.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"48 1\",\"pages\":\"864 - 880\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2016.1163443\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2016.1163443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2016.1163443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文介绍了SPSTS,一种自动顺序程序,用于计算模拟生成过程的稳态均值的点和置信区间(CI)估计量,该过程受用户指定的CI覆盖概率和相对半长要求的约束。SPSTS是第一个基于稳态方差参数(即所有滞后协方差之和)的标准化时间序列(STS)面积估计的序列方法。其主要竞争对手依赖于批处理方法来消除由于初始瞬态引起的偏差,估计方差参数并计算CI,而SPSTS依赖于对应于两个正交STS区域方差估计器的带符号区域来完成这些任务。在SPSTS的连续阶段中,标准的正态性和独立性测试应用于签名区域,以确定(i)预热期的长度,以及(ii)足以确保相关的STS区域方差估计量充分收敛到其极限卡方分布的批量大小。通过选择不同难度的测试问题,将SPSTS的性能与最近的批均值方法进行了实验比较。SPSTS在平均所需样本量以及最终ci的覆盖范围和平均半长方面表现相对较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPSTS: A sequential procedure for estimating the steady-state mean using standardized time series
ABSTRACT This article presents SPSTS, an automated sequential procedure for computing point and Confidence-Interval (CI) estimators for the steady-state mean of a simulation-generated process subject to user-specified requirements for the CI coverage probability and relative half-length. SPSTS is the first sequential method based on Standardized Time Series (STS) area estimators of the steady-state variance parameter (i.e., the sum of covariances at all lags). Whereas its leading competitors rely on the method of batch means to remove bias due to the initial transient, estimate the variance parameter, and compute the CI, SPSTS relies on the signed areas corresponding to two orthonormal STS area variance estimators for these tasks. In successive stages of SPSTS, standard tests for normality and independence are applied to the signed areas to determine (i) the length of the warm-up period, and (ii) a batch size sufficient to ensure adequate convergence of the associated STS area variance estimators to their limiting chi-squared distributions. SPSTS's performance is compared experimentally with that of recent batch-means methods using selected test problems of varying degrees of difficulty. SPSTS performed comparatively well in terms of its average required sample size as well as the coverage and average half-length of the final CIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1