与墨西哥湾东部深海海底地流体特征相关的内生孢子

IF 2.7 2区 地球科学 Q2 BIOLOGY Geobiology Pub Date : 2022-08-22 DOI:10.1111/gbi.12517
Jayne E. Rattray, Anirban Chakraborty, Gretta Elizondo, Emily Ellefson, Bernie Bernard, James Brooks, Casey R. J. Hubert
{"title":"与墨西哥湾东部深海海底地流体特征相关的内生孢子","authors":"Jayne E. Rattray,&nbsp;Anirban Chakraborty,&nbsp;Gretta Elizondo,&nbsp;Emily Ellefson,&nbsp;Bernie Bernard,&nbsp;James Brooks,&nbsp;Casey R. J. Hubert","doi":"10.1111/gbi.12517","DOIUrl":null,"url":null,"abstract":"<p>Recent studies have reported up to 1.9 × 10<sup>29</sup> bacterial endospores in the upper kilometre of deep subseafloor marine sediments, however, little is understood about their origin and dispersal. In cold ocean environments, the presence of thermospores (endospores produced by thermophilic bacteria) suggests that distribution is governed by passive migration from warm anoxic sources possibly facilitated by geofluid flow, such as advective hydrocarbon seepage sourced from petroleum deposits deeper in the subsurface. This study assesses this hypothesis by measuring endospore abundance and distribution across 60 sites in Eastern Gulf of Mexico (EGM) sediments using a combination of the endospore biomarker 2,6-pyridine dicarboxylic acid or ‘dipicolinic acid’ (DPA), sequencing 16S rRNA genes of thermospores germinated in 50°C sediment incubations, petroleum geochemistry in the sediments and acoustic seabed data from sub-bottom profiling. High endospore abundance is associated with geologically active conduit features (mud volcanoes, pockmarks, escarpments and fault systems), consistent with subsurface fluid flow dispersing endospores from deep warm sources up into the cold ocean. Thermospores identified at conduit sites were most closely related to bacteria associated with the deep biosphere habitats including hydrocarbon systems. The high endospore abundance at geological seep features demonstrated here suggests that recalcitrant endospores and their chemical components (such as DPA) can be used in concert with geochemical and geophysical analyses to locate discharging seafloor features. This multiproxy approach can be used to better understand patterns of advective fluid flow in regions with complex geology like the EGM basin.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 6","pages":"823-836"},"PeriodicalIF":2.7000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12517","citationCount":"4","resultStr":"{\"title\":\"Endospores associated with deep seabed geofluid features in the eastern Gulf of Mexico\",\"authors\":\"Jayne E. Rattray,&nbsp;Anirban Chakraborty,&nbsp;Gretta Elizondo,&nbsp;Emily Ellefson,&nbsp;Bernie Bernard,&nbsp;James Brooks,&nbsp;Casey R. J. Hubert\",\"doi\":\"10.1111/gbi.12517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent studies have reported up to 1.9 × 10<sup>29</sup> bacterial endospores in the upper kilometre of deep subseafloor marine sediments, however, little is understood about their origin and dispersal. In cold ocean environments, the presence of thermospores (endospores produced by thermophilic bacteria) suggests that distribution is governed by passive migration from warm anoxic sources possibly facilitated by geofluid flow, such as advective hydrocarbon seepage sourced from petroleum deposits deeper in the subsurface. This study assesses this hypothesis by measuring endospore abundance and distribution across 60 sites in Eastern Gulf of Mexico (EGM) sediments using a combination of the endospore biomarker 2,6-pyridine dicarboxylic acid or ‘dipicolinic acid’ (DPA), sequencing 16S rRNA genes of thermospores germinated in 50°C sediment incubations, petroleum geochemistry in the sediments and acoustic seabed data from sub-bottom profiling. High endospore abundance is associated with geologically active conduit features (mud volcanoes, pockmarks, escarpments and fault systems), consistent with subsurface fluid flow dispersing endospores from deep warm sources up into the cold ocean. Thermospores identified at conduit sites were most closely related to bacteria associated with the deep biosphere habitats including hydrocarbon systems. The high endospore abundance at geological seep features demonstrated here suggests that recalcitrant endospores and their chemical components (such as DPA) can be used in concert with geochemical and geophysical analyses to locate discharging seafloor features. This multiproxy approach can be used to better understand patterns of advective fluid flow in regions with complex geology like the EGM basin.</p>\",\"PeriodicalId\":173,\"journal\":{\"name\":\"Geobiology\",\"volume\":\"20 6\",\"pages\":\"823-836\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12517\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12517\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12517","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

最近的研究报道了深海海底沉积物中高达1.9 × 1029个细菌内生孢子,然而,对它们的起源和分布知之甚少。在寒冷的海洋环境中,热孢子(由嗜热细菌产生的内生孢子)的存在表明,其分布受来自温暖缺氧源的被动迁移控制,这可能受到地流体流动的促进,例如来自地下深处石油矿床的平流烃渗漏。本研究利用内孢子生物标志物2,6-吡啶二羧酸或“二吡啶酸”(DPA)、50°C沉积物培养中萌发的热孢子的16S rRNA基因测序、沉积物中的石油地球化学和海底海底声学数据,测量了东墨西哥湾(EGM)沉积物中60个地点的内孢子丰度和分布,对这一假设进行了评估。高内生孢子丰度与地质活跃的管道特征(泥火山、麻坑、悬崖和断层系统)有关,与地下流体流动将内生孢子从深部热源扩散到冷海洋相一致。在管道位置发现的热孢子与深层生物圈栖息地(包括碳氢化合物系统)相关的细菌关系最为密切。地质渗漏特征处的高内孢子丰度表明,顽固性内孢子及其化学成分(如DPA)可以与地球化学和地球物理分析相结合,用于定位排放海底特征。这种多代理方法可以用来更好地理解像EGM盆地这样具有复杂地质条件的地区的对流流体流动模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Endospores associated with deep seabed geofluid features in the eastern Gulf of Mexico

Recent studies have reported up to 1.9 × 1029 bacterial endospores in the upper kilometre of deep subseafloor marine sediments, however, little is understood about their origin and dispersal. In cold ocean environments, the presence of thermospores (endospores produced by thermophilic bacteria) suggests that distribution is governed by passive migration from warm anoxic sources possibly facilitated by geofluid flow, such as advective hydrocarbon seepage sourced from petroleum deposits deeper in the subsurface. This study assesses this hypothesis by measuring endospore abundance and distribution across 60 sites in Eastern Gulf of Mexico (EGM) sediments using a combination of the endospore biomarker 2,6-pyridine dicarboxylic acid or ‘dipicolinic acid’ (DPA), sequencing 16S rRNA genes of thermospores germinated in 50°C sediment incubations, petroleum geochemistry in the sediments and acoustic seabed data from sub-bottom profiling. High endospore abundance is associated with geologically active conduit features (mud volcanoes, pockmarks, escarpments and fault systems), consistent with subsurface fluid flow dispersing endospores from deep warm sources up into the cold ocean. Thermospores identified at conduit sites were most closely related to bacteria associated with the deep biosphere habitats including hydrocarbon systems. The high endospore abundance at geological seep features demonstrated here suggests that recalcitrant endospores and their chemical components (such as DPA) can be used in concert with geochemical and geophysical analyses to locate discharging seafloor features. This multiproxy approach can be used to better understand patterns of advective fluid flow in regions with complex geology like the EGM basin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
期刊最新文献
Redox Gradient Shapes the Chemical Composition of Peatland Microbial Communities Ultrastructural Perspectives on the Biology and Taphonomy of Tonian Microfossils From the Draken Formation, Spitsbergen Issue Information Featured Cover A Biofilm Channel Origin for Vermiform Microstructure in Carbonate Microbialites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1