{"title":"车辆运动的横向维度建模:随机微分方法与应用","authors":"HongSheng Qi","doi":"10.1080/23249935.2023.2239375","DOIUrl":null,"url":null,"abstract":"<div><div>A stochastic lateral movement model is proposed to address the limitations of current traffic models, which fail to capture the stochastic nature of the lateral component in vehicle movement during lane keeping and lane changing. This model incorporates a lateral noise component and a lateral movement component, with parameters that have clear physical interpretations including noise intensity, driver’s sensitivity to lateral deviation, and sensitivity to noise. The model successfully describes the real-world distribution and standard deviation of lateral displacement, achieves over 70% accuracy in distinguishing between human driven vehicles and autonomous vehicles, derives the lane changing duration distribution consistent with experimental observation, and shows that the sensitivity to lateral deviation is about 7 times higher in lane changing compared to lane keeping.</div></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"21 1","pages":"Pages 411-435"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the lateral dimension of vehicles movement: a stochastic differential approach with applications\",\"authors\":\"HongSheng Qi\",\"doi\":\"10.1080/23249935.2023.2239375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A stochastic lateral movement model is proposed to address the limitations of current traffic models, which fail to capture the stochastic nature of the lateral component in vehicle movement during lane keeping and lane changing. This model incorporates a lateral noise component and a lateral movement component, with parameters that have clear physical interpretations including noise intensity, driver’s sensitivity to lateral deviation, and sensitivity to noise. The model successfully describes the real-world distribution and standard deviation of lateral displacement, achieves over 70% accuracy in distinguishing between human driven vehicles and autonomous vehicles, derives the lane changing duration distribution consistent with experimental observation, and shows that the sensitivity to lateral deviation is about 7 times higher in lane changing compared to lane keeping.</div></div>\",\"PeriodicalId\":48871,\"journal\":{\"name\":\"Transportmetrica A-Transport Science\",\"volume\":\"21 1\",\"pages\":\"Pages 411-435\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica A-Transport Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2324993523001951\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2324993523001951","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Modelling the lateral dimension of vehicles movement: a stochastic differential approach with applications
A stochastic lateral movement model is proposed to address the limitations of current traffic models, which fail to capture the stochastic nature of the lateral component in vehicle movement during lane keeping and lane changing. This model incorporates a lateral noise component and a lateral movement component, with parameters that have clear physical interpretations including noise intensity, driver’s sensitivity to lateral deviation, and sensitivity to noise. The model successfully describes the real-world distribution and standard deviation of lateral displacement, achieves over 70% accuracy in distinguishing between human driven vehicles and autonomous vehicles, derives the lane changing duration distribution consistent with experimental observation, and shows that the sensitivity to lateral deviation is about 7 times higher in lane changing compared to lane keeping.
期刊介绍:
Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.