A. Rauh, Julia Kersten, Wiebke Frenkel, Niklas Kruse, Tom Schmidt
{"title":"固体氧化物燃料电池多物理场建模的物理驱动结构和神经网络优化","authors":"A. Rauh, Julia Kersten, Wiebke Frenkel, Niklas Kruse, Tom Schmidt","doi":"10.1080/13873954.2021.1990966","DOIUrl":null,"url":null,"abstract":"ABSTRACT Neural network models for complex dynamical systems typically do not explicitly account for structural engineering insight and mutual interrelations of various subprocesses that are related to the multi-physics nature of such systems. For that reason, they are commonly interpreted as a kind of data-driven, black box modelling option that is in opposition to a physically inspired equation-based system representation for which suitable parameters are subsequently identified in a grey box sense. To bridge the gap between data-driven and equation-based modelling paradigms, this paper proposes a novel approach for a physics-inspired structuring of neural networks. The derivation of this kind of structuring, an optimal choice of network inputs and numbers of neurons in a hidden layer as well as the achievable modelling accuracy are demonstrated for the thermal and electrochemical behaviour of high-temperature fuel cells. Finally, different network structures are compared against experimental data.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"30 1","pages":"586 - 614"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Physically motivated structuring and optimization of neural networks for multi-physics modelling of solid oxide fuel cells\",\"authors\":\"A. Rauh, Julia Kersten, Wiebke Frenkel, Niklas Kruse, Tom Schmidt\",\"doi\":\"10.1080/13873954.2021.1990966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Neural network models for complex dynamical systems typically do not explicitly account for structural engineering insight and mutual interrelations of various subprocesses that are related to the multi-physics nature of such systems. For that reason, they are commonly interpreted as a kind of data-driven, black box modelling option that is in opposition to a physically inspired equation-based system representation for which suitable parameters are subsequently identified in a grey box sense. To bridge the gap between data-driven and equation-based modelling paradigms, this paper proposes a novel approach for a physics-inspired structuring of neural networks. The derivation of this kind of structuring, an optimal choice of network inputs and numbers of neurons in a hidden layer as well as the achievable modelling accuracy are demonstrated for the thermal and electrochemical behaviour of high-temperature fuel cells. Finally, different network structures are compared against experimental data.\",\"PeriodicalId\":49871,\"journal\":{\"name\":\"Mathematical and Computer Modelling of Dynamical Systems\",\"volume\":\"30 1\",\"pages\":\"586 - 614\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computer Modelling of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/13873954.2021.1990966\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2021.1990966","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Physically motivated structuring and optimization of neural networks for multi-physics modelling of solid oxide fuel cells
ABSTRACT Neural network models for complex dynamical systems typically do not explicitly account for structural engineering insight and mutual interrelations of various subprocesses that are related to the multi-physics nature of such systems. For that reason, they are commonly interpreted as a kind of data-driven, black box modelling option that is in opposition to a physically inspired equation-based system representation for which suitable parameters are subsequently identified in a grey box sense. To bridge the gap between data-driven and equation-based modelling paradigms, this paper proposes a novel approach for a physics-inspired structuring of neural networks. The derivation of this kind of structuring, an optimal choice of network inputs and numbers of neurons in a hidden layer as well as the achievable modelling accuracy are demonstrated for the thermal and electrochemical behaviour of high-temperature fuel cells. Finally, different network structures are compared against experimental data.
期刊介绍:
Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems.
The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application.
MCMDS welcomes original articles on a range of topics including:
-methods of modelling and simulation-
automation of modelling-
qualitative and modular modelling-
data-based and learning-based modelling-
uncertainties and the effects of modelling errors on system performance-
application of modelling to complex real-world systems.