{"title":"利用人工免疫系统防御MANET中的虫洞攻击","authors":"S. Jamali, Reza Fotohi","doi":"10.1080/13614576.2016.1247741","DOIUrl":null,"url":null,"abstract":"ABSTRACT MANETs are mobile networks that are spontaneously deployed over a geographically limited area without requiring any pre-existing infrastructure. Typically, nodes are both autonomous and self-organized without requiring a central administration or a fixed network infrastructure. Due to their distributed nature, MANET is vulnerable to a specific routing misbehavior, called wormhole attack. In a wormhole attack, one malicious node tunnels packets from its location to the other malicious node. Such wormhole attacks result in a false route with fewer hop count. If the source node follows this fake route, malicious nodes have the option of delivering the packets or dropping them. This article aims at removing these attacks. For this purpose, it investigates the use of an Artificial Immune System (AIS) to defend against wormhole attack. The proposed approach learns rapidly how to detect and bypass the wormhole nodes without affecting the overall performance of the network. The proposed approach is evaluated in comparison with other existing solutions in terms of dropped packet count, packet loss ratio, throughput, packet delivery ratio, and end-to-end delay. A simulation result shows that the proposed approach offers better performance than other schemes defending against the wormhole attack.","PeriodicalId":35726,"journal":{"name":"New Review of Information Networking","volume":"21 1","pages":"100 - 79"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13614576.2016.1247741","citationCount":"59","resultStr":"{\"title\":\"Defending against Wormhole Attack in MANET Using an Artificial Immune System\",\"authors\":\"S. Jamali, Reza Fotohi\",\"doi\":\"10.1080/13614576.2016.1247741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT MANETs are mobile networks that are spontaneously deployed over a geographically limited area without requiring any pre-existing infrastructure. Typically, nodes are both autonomous and self-organized without requiring a central administration or a fixed network infrastructure. Due to their distributed nature, MANET is vulnerable to a specific routing misbehavior, called wormhole attack. In a wormhole attack, one malicious node tunnels packets from its location to the other malicious node. Such wormhole attacks result in a false route with fewer hop count. If the source node follows this fake route, malicious nodes have the option of delivering the packets or dropping them. This article aims at removing these attacks. For this purpose, it investigates the use of an Artificial Immune System (AIS) to defend against wormhole attack. The proposed approach learns rapidly how to detect and bypass the wormhole nodes without affecting the overall performance of the network. The proposed approach is evaluated in comparison with other existing solutions in terms of dropped packet count, packet loss ratio, throughput, packet delivery ratio, and end-to-end delay. A simulation result shows that the proposed approach offers better performance than other schemes defending against the wormhole attack.\",\"PeriodicalId\":35726,\"journal\":{\"name\":\"New Review of Information Networking\",\"volume\":\"21 1\",\"pages\":\"100 - 79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13614576.2016.1247741\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Review of Information Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13614576.2016.1247741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Review of Information Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13614576.2016.1247741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Defending against Wormhole Attack in MANET Using an Artificial Immune System
ABSTRACT MANETs are mobile networks that are spontaneously deployed over a geographically limited area without requiring any pre-existing infrastructure. Typically, nodes are both autonomous and self-organized without requiring a central administration or a fixed network infrastructure. Due to their distributed nature, MANET is vulnerable to a specific routing misbehavior, called wormhole attack. In a wormhole attack, one malicious node tunnels packets from its location to the other malicious node. Such wormhole attacks result in a false route with fewer hop count. If the source node follows this fake route, malicious nodes have the option of delivering the packets or dropping them. This article aims at removing these attacks. For this purpose, it investigates the use of an Artificial Immune System (AIS) to defend against wormhole attack. The proposed approach learns rapidly how to detect and bypass the wormhole nodes without affecting the overall performance of the network. The proposed approach is evaluated in comparison with other existing solutions in terms of dropped packet count, packet loss ratio, throughput, packet delivery ratio, and end-to-end delay. A simulation result shows that the proposed approach offers better performance than other schemes defending against the wormhole attack.
期刊介绍:
Information networking is an enabling technology with the potential to integrate and transform information provision, communication and learning. The New Review of Information Networking, published biannually, provides an expert source on the needs and behaviour of the network user; the role of networks in teaching, learning, research and scholarly communication; the implications of networks for library and information services; the development of campus and other information strategies; the role of information publishers on the networks; policies for funding and charging for network and information services; and standards and protocols for network applications.