Stefania Venturi, Simona Crognale, Francesco Di Benedetto, Giordano Montegrossi, Barbara Casentini, Stefano Amalfitano, Tommaso Baroni, Simona Rossetti, Franco Tassi, Francesco Capecchiacci, Orlando Vaselli, Stefano Fazi
{"title":"非生物和微生物生物膜介导的石灰华形成过程之间的相互作用:来自温泉的见解(Piscine Carletti, Viterbo, Italy)","authors":"Stefania Venturi, Simona Crognale, Francesco Di Benedetto, Giordano Montegrossi, Barbara Casentini, Stefano Amalfitano, Tommaso Baroni, Simona Rossetti, Franco Tassi, Francesco Capecchiacci, Orlando Vaselli, Stefano Fazi","doi":"10.1111/gbi.12516","DOIUrl":null,"url":null,"abstract":"<p>Active hydrothermal travertine systems are ideal environments to investigate how abiotic and biotic processes affect mineralization mechanisms and mineral fabric formation. In this study, a biogeochemical characterization of waters, dissolved gases, and microbial mats was performed together with a mineralogical investigation on travertine encrustations occurring at the outflow channel of a thermal spring. The comprehensive model, compiled by means of TOUGHREACT computational tool from measured parameters, revealed that mineral phases were differently influenced by either abiotic conditions or microbially driven processes. Microbial mats are shaped by light availability and temperature gradient of waters flowing along the channel. Mineralogical features were homogeneous throughout the system, with euhedral calcite crystals, related to inorganic precipitation induced by CO<sub>2</sub> degassing, and calcite shrubs associated with organomineralization processes, thus indicating an indirect microbial participation to the mineral deposition (microbially influenced calcite). The microbial activity played a role in driving calcite redissolution processes, resulting in circular pits on calcite crystal surfaces possibly related to the metabolic activity of sulfur-oxidizing bacteria found at a high relative abundance within the biofilm community. Sulfur oxidation might also explain the occurrence of gypsum crystals embedded in microbial mats, since gypsum precipitation could be induced by a local increase in sulfate concentration mediated by S-oxidizing bacteria, regardless of the overall undersaturated environmental conditions. Moreover, the absence of gypsum dissolution suggested the capability of microbial biofilm in modulating the mobility of chemical species by providing a protective envelope on gypsum crystals.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 6","pages":"837-856"},"PeriodicalIF":2.7000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interplay between abiotic and microbial biofilm-mediated processes for travertine formation: Insights from a thermal spring (Piscine Carletti, Viterbo, Italy)\",\"authors\":\"Stefania Venturi, Simona Crognale, Francesco Di Benedetto, Giordano Montegrossi, Barbara Casentini, Stefano Amalfitano, Tommaso Baroni, Simona Rossetti, Franco Tassi, Francesco Capecchiacci, Orlando Vaselli, Stefano Fazi\",\"doi\":\"10.1111/gbi.12516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Active hydrothermal travertine systems are ideal environments to investigate how abiotic and biotic processes affect mineralization mechanisms and mineral fabric formation. In this study, a biogeochemical characterization of waters, dissolved gases, and microbial mats was performed together with a mineralogical investigation on travertine encrustations occurring at the outflow channel of a thermal spring. The comprehensive model, compiled by means of TOUGHREACT computational tool from measured parameters, revealed that mineral phases were differently influenced by either abiotic conditions or microbially driven processes. Microbial mats are shaped by light availability and temperature gradient of waters flowing along the channel. Mineralogical features were homogeneous throughout the system, with euhedral calcite crystals, related to inorganic precipitation induced by CO<sub>2</sub> degassing, and calcite shrubs associated with organomineralization processes, thus indicating an indirect microbial participation to the mineral deposition (microbially influenced calcite). The microbial activity played a role in driving calcite redissolution processes, resulting in circular pits on calcite crystal surfaces possibly related to the metabolic activity of sulfur-oxidizing bacteria found at a high relative abundance within the biofilm community. Sulfur oxidation might also explain the occurrence of gypsum crystals embedded in microbial mats, since gypsum precipitation could be induced by a local increase in sulfate concentration mediated by S-oxidizing bacteria, regardless of the overall undersaturated environmental conditions. Moreover, the absence of gypsum dissolution suggested the capability of microbial biofilm in modulating the mobility of chemical species by providing a protective envelope on gypsum crystals.</p>\",\"PeriodicalId\":173,\"journal\":{\"name\":\"Geobiology\",\"volume\":\"20 6\",\"pages\":\"837-856\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12516\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12516","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Interplay between abiotic and microbial biofilm-mediated processes for travertine formation: Insights from a thermal spring (Piscine Carletti, Viterbo, Italy)
Active hydrothermal travertine systems are ideal environments to investigate how abiotic and biotic processes affect mineralization mechanisms and mineral fabric formation. In this study, a biogeochemical characterization of waters, dissolved gases, and microbial mats was performed together with a mineralogical investigation on travertine encrustations occurring at the outflow channel of a thermal spring. The comprehensive model, compiled by means of TOUGHREACT computational tool from measured parameters, revealed that mineral phases were differently influenced by either abiotic conditions or microbially driven processes. Microbial mats are shaped by light availability and temperature gradient of waters flowing along the channel. Mineralogical features were homogeneous throughout the system, with euhedral calcite crystals, related to inorganic precipitation induced by CO2 degassing, and calcite shrubs associated with organomineralization processes, thus indicating an indirect microbial participation to the mineral deposition (microbially influenced calcite). The microbial activity played a role in driving calcite redissolution processes, resulting in circular pits on calcite crystal surfaces possibly related to the metabolic activity of sulfur-oxidizing bacteria found at a high relative abundance within the biofilm community. Sulfur oxidation might also explain the occurrence of gypsum crystals embedded in microbial mats, since gypsum precipitation could be induced by a local increase in sulfate concentration mediated by S-oxidizing bacteria, regardless of the overall undersaturated environmental conditions. Moreover, the absence of gypsum dissolution suggested the capability of microbial biofilm in modulating the mobility of chemical species by providing a protective envelope on gypsum crystals.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.