{"title":"利用地形特征来预测候鸟的气候适应性栖息地的好处:以生锈黑鸟、橄榄面捕蝇鸟和加拿大林莺为例","authors":"S. Bale, K. Beazley, A. Westwood, Peter G. Bush","doi":"10.1093/condor/duz057","DOIUrl":null,"url":null,"abstract":"ABSTRACT Maintaining a functionally connected network of high-quality habitat is one of the most effective responses to biodiversity loss. However, the spatial distribution of suitable habitat may shift over time in response to climate change. Taxa such as migratory forest landbirds are already undergoing climate-driven range shifts. Therefore, patches of climate-resilient habitat (also known as “climate refugia”) are especially valuable from a conservation perspective. Here, we performed maximum entropy (Maxent) species distribution modeling to predict suitable and potentially climate-resilient habitat in Nova Scotia, Canada, for 3 migratory forest landbirds: Rusty Blackbird (Euphagus carolinus), Olive-sided Flycatcher (Contopus cooperi), and Canada Warbler (Cardellina canadensis). We used a reverse stepwise elimination technique to identify covariates that influence habitat suitability for the target species at broad scales, including abiotic (topographic control of moisture and nutrient accumulation) and biotic (forest characteristics) covariates. As topography should be relatively unaffected by a changing climate and helps regulate the structure and composition of forest habitat, we posit that the inclusion of appropriate topographic features may support the identification of climate-resilient habitat. Of all covariates, depth to water table was the most important predictor of relative habitat suitability for the Rusty Blackbird and Canada Warbler, with both species showing a strong association with wet areas. Mean canopy height was the most important predictor for the Olive-sided Flycatcher, whereby the species was associated with taller trees. Our models, which comprise the finest-scale species distribution models available for these species in this region, further indicated that, for all species, habitat (1) remains relatively abundant and well distributed in Nova Scotia and (2) is often located in wet lowlands (a climate-resilient topographic landform). These findings suggest that opportunities remain to conserve breeding habitat for these species despite changing temperature and precipitation regimes.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duz057","citationCount":"10","resultStr":"{\"title\":\"The benefits of using topographic features to predict climate-resilient habitat for migratory forest landbirds: An example for the Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler\",\"authors\":\"S. Bale, K. Beazley, A. Westwood, Peter G. Bush\",\"doi\":\"10.1093/condor/duz057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Maintaining a functionally connected network of high-quality habitat is one of the most effective responses to biodiversity loss. However, the spatial distribution of suitable habitat may shift over time in response to climate change. Taxa such as migratory forest landbirds are already undergoing climate-driven range shifts. Therefore, patches of climate-resilient habitat (also known as “climate refugia”) are especially valuable from a conservation perspective. Here, we performed maximum entropy (Maxent) species distribution modeling to predict suitable and potentially climate-resilient habitat in Nova Scotia, Canada, for 3 migratory forest landbirds: Rusty Blackbird (Euphagus carolinus), Olive-sided Flycatcher (Contopus cooperi), and Canada Warbler (Cardellina canadensis). We used a reverse stepwise elimination technique to identify covariates that influence habitat suitability for the target species at broad scales, including abiotic (topographic control of moisture and nutrient accumulation) and biotic (forest characteristics) covariates. As topography should be relatively unaffected by a changing climate and helps regulate the structure and composition of forest habitat, we posit that the inclusion of appropriate topographic features may support the identification of climate-resilient habitat. Of all covariates, depth to water table was the most important predictor of relative habitat suitability for the Rusty Blackbird and Canada Warbler, with both species showing a strong association with wet areas. Mean canopy height was the most important predictor for the Olive-sided Flycatcher, whereby the species was associated with taller trees. Our models, which comprise the finest-scale species distribution models available for these species in this region, further indicated that, for all species, habitat (1) remains relatively abundant and well distributed in Nova Scotia and (2) is often located in wet lowlands (a climate-resilient topographic landform). These findings suggest that opportunities remain to conserve breeding habitat for these species despite changing temperature and precipitation regimes.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/condor/duz057\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/condor/duz057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/condor/duz057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The benefits of using topographic features to predict climate-resilient habitat for migratory forest landbirds: An example for the Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler
ABSTRACT Maintaining a functionally connected network of high-quality habitat is one of the most effective responses to biodiversity loss. However, the spatial distribution of suitable habitat may shift over time in response to climate change. Taxa such as migratory forest landbirds are already undergoing climate-driven range shifts. Therefore, patches of climate-resilient habitat (also known as “climate refugia”) are especially valuable from a conservation perspective. Here, we performed maximum entropy (Maxent) species distribution modeling to predict suitable and potentially climate-resilient habitat in Nova Scotia, Canada, for 3 migratory forest landbirds: Rusty Blackbird (Euphagus carolinus), Olive-sided Flycatcher (Contopus cooperi), and Canada Warbler (Cardellina canadensis). We used a reverse stepwise elimination technique to identify covariates that influence habitat suitability for the target species at broad scales, including abiotic (topographic control of moisture and nutrient accumulation) and biotic (forest characteristics) covariates. As topography should be relatively unaffected by a changing climate and helps regulate the structure and composition of forest habitat, we posit that the inclusion of appropriate topographic features may support the identification of climate-resilient habitat. Of all covariates, depth to water table was the most important predictor of relative habitat suitability for the Rusty Blackbird and Canada Warbler, with both species showing a strong association with wet areas. Mean canopy height was the most important predictor for the Olive-sided Flycatcher, whereby the species was associated with taller trees. Our models, which comprise the finest-scale species distribution models available for these species in this region, further indicated that, for all species, habitat (1) remains relatively abundant and well distributed in Nova Scotia and (2) is often located in wet lowlands (a climate-resilient topographic landform). These findings suggest that opportunities remain to conserve breeding habitat for these species despite changing temperature and precipitation regimes.