{"title":"垂直伏击走廊:有趣的多机制生态结构嵌入海洋生物资源生产系统的动态流体结构中","authors":"Andrew Bakun","doi":"10.1111/faf.12699","DOIUrl":null,"url":null,"abstract":"<p>The concept of a ‘<i>vertical ambush corridor</i>’ is herein introduced to marine ecosystem science. In the open ocean, adequate physical cover from which to launch an unanticipated ambush attack is generally lacking. An available alternative is for a predator to channel its attack vertically upward from below, rendering an unlighted approaching predator extremely difficult for a downward viewing potential prey to visually identify against the profound blackness of the deep ocean background. Moreover, within sub-mesoscale structures wherein the ambient water is sinking, slightly warmer water temperatures within the core of the downward motion results in outward refraction of both sound and light waves, producing sound and light shadow patterns that may reduce the capacity of prey organisms to recognize the approach of an upwardly attacking predator. This suggests that presence of such submarine ‘<i>vambush</i>’ structures may enhance trophic transfer efficiency within marine ecosystems, as well as provide perhaps the best available explanation for such predator behaviours as the evident strong attraction to drifting flotsam and floating fish aggregation devices (FADs), as well as the repeated large amplitude ‘bounce dives’ undertaken by a large number of dominant oceanic predatory fish species. The oxygen constraints faced by water-breathing organisms are posed as controlling factors in the potential ecological operation of these <i>vambush</i> structures, that in turn may have potential vulnerability to the growing global problem of ocean deoxygenation. Increased identifiable habitat granularity represented by such sub-mesoscale features may have important utility in supporting empirical studies and applications of the comparative scientific method.</p>","PeriodicalId":169,"journal":{"name":"Fish and Fisheries","volume":"24 1","pages":"3-20"},"PeriodicalIF":5.6000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/faf.12699","citationCount":"2","resultStr":"{\"title\":\"Vertical ambush corridors: Intriguing multi-mechanism ecological structures embedded in the kinetic fluid architectures of ocean living resource production systems\",\"authors\":\"Andrew Bakun\",\"doi\":\"10.1111/faf.12699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of a ‘<i>vertical ambush corridor</i>’ is herein introduced to marine ecosystem science. In the open ocean, adequate physical cover from which to launch an unanticipated ambush attack is generally lacking. An available alternative is for a predator to channel its attack vertically upward from below, rendering an unlighted approaching predator extremely difficult for a downward viewing potential prey to visually identify against the profound blackness of the deep ocean background. Moreover, within sub-mesoscale structures wherein the ambient water is sinking, slightly warmer water temperatures within the core of the downward motion results in outward refraction of both sound and light waves, producing sound and light shadow patterns that may reduce the capacity of prey organisms to recognize the approach of an upwardly attacking predator. This suggests that presence of such submarine ‘<i>vambush</i>’ structures may enhance trophic transfer efficiency within marine ecosystems, as well as provide perhaps the best available explanation for such predator behaviours as the evident strong attraction to drifting flotsam and floating fish aggregation devices (FADs), as well as the repeated large amplitude ‘bounce dives’ undertaken by a large number of dominant oceanic predatory fish species. The oxygen constraints faced by water-breathing organisms are posed as controlling factors in the potential ecological operation of these <i>vambush</i> structures, that in turn may have potential vulnerability to the growing global problem of ocean deoxygenation. Increased identifiable habitat granularity represented by such sub-mesoscale features may have important utility in supporting empirical studies and applications of the comparative scientific method.</p>\",\"PeriodicalId\":169,\"journal\":{\"name\":\"Fish and Fisheries\",\"volume\":\"24 1\",\"pages\":\"3-20\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/faf.12699\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish and Fisheries\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/faf.12699\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/faf.12699","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Vertical ambush corridors: Intriguing multi-mechanism ecological structures embedded in the kinetic fluid architectures of ocean living resource production systems
The concept of a ‘vertical ambush corridor’ is herein introduced to marine ecosystem science. In the open ocean, adequate physical cover from which to launch an unanticipated ambush attack is generally lacking. An available alternative is for a predator to channel its attack vertically upward from below, rendering an unlighted approaching predator extremely difficult for a downward viewing potential prey to visually identify against the profound blackness of the deep ocean background. Moreover, within sub-mesoscale structures wherein the ambient water is sinking, slightly warmer water temperatures within the core of the downward motion results in outward refraction of both sound and light waves, producing sound and light shadow patterns that may reduce the capacity of prey organisms to recognize the approach of an upwardly attacking predator. This suggests that presence of such submarine ‘vambush’ structures may enhance trophic transfer efficiency within marine ecosystems, as well as provide perhaps the best available explanation for such predator behaviours as the evident strong attraction to drifting flotsam and floating fish aggregation devices (FADs), as well as the repeated large amplitude ‘bounce dives’ undertaken by a large number of dominant oceanic predatory fish species. The oxygen constraints faced by water-breathing organisms are posed as controlling factors in the potential ecological operation of these vambush structures, that in turn may have potential vulnerability to the growing global problem of ocean deoxygenation. Increased identifiable habitat granularity represented by such sub-mesoscale features may have important utility in supporting empirical studies and applications of the comparative scientific method.
期刊介绍:
Fish and Fisheries adopts a broad, interdisciplinary approach to the subject of fish biology and fisheries. It draws contributions in the form of major synoptic papers and syntheses or meta-analyses that lay out new approaches, re-examine existing findings, methods or theory, and discuss papers and commentaries from diverse areas. Focal areas include fish palaeontology, molecular biology and ecology, genetics, biochemistry, physiology, ecology, behaviour, evolutionary studies, conservation, assessment, population dynamics, mathematical modelling, ecosystem analysis and the social, economic and policy aspects of fisheries where they are grounded in a scientific approach. A paper in Fish and Fisheries must draw upon all key elements of the existing literature on a topic, normally have a broad geographic and/or taxonomic scope, and provide general points which make it compelling to a wide range of readers whatever their geographical location. So, in short, we aim to publish articles that make syntheses of old or synoptic, long-term or spatially widespread data, introduce or consolidate fresh concepts or theory, or, in the Ghoti section, briefly justify preliminary, new synoptic ideas. Please note that authors of submissions not meeting this mandate will be directed to the appropriate primary literature.