{"title":"俄勒冈西部原生林中硬木密度和大小的中尺度变化","authors":"A. Ares, Cheryl A. Bright, K. Puettmann","doi":"10.1093/WJAF/27.1.12","DOIUrl":null,"url":null,"abstract":"Snags and hardwoods contribute to biological, structural, and functional diversity in old-growth forests. In the US Pacific Northwest, only general knowledge about regional patterns is available to determine target density of snags and hardwood trees. To investigate their variability at relevant scales for silviculture, we examined snag and hardwood densities and sizes in 20 old-growth units in northern and southern aspects in the Coast Range and the Willamette Valley foothills of Oregon. Snag densities varied largely between subregions and aspects, with aspect affecting densities more than subregion. In the Coast Range, snag density was 2.8 times greater on northern aspects than on southern aspects, whereas in the Willamette Valley foothills snag density was 1.4 times greater on northern aspects than on southern aspects. Density of snags larger than 101.6 cm in diameter was very low. Hardwood densities were also greater on northern aspects than on southern aspects. The negative exponential distribution of hardwood density frequency by size classes could be explained by cohort growth under a wide range of competitive pressures or repeated-recruitment events. Aspect and subregion should be taken into account when defining management targets. Allowing for flexibility at these smaller spatial scales would better reflect the variability in ecological conditions and land use history that led to the development of old-growth stands.","PeriodicalId":51220,"journal":{"name":"Western Journal of Applied Forestry","volume":"27 1","pages":"12-17"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/WJAF/27.1.12","citationCount":"6","resultStr":"{\"title\":\"Mesoscale Variation in Snag and Hardwood Densities and Sizes in Old-Growth Forests in Western Oregon\",\"authors\":\"A. Ares, Cheryl A. Bright, K. Puettmann\",\"doi\":\"10.1093/WJAF/27.1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snags and hardwoods contribute to biological, structural, and functional diversity in old-growth forests. In the US Pacific Northwest, only general knowledge about regional patterns is available to determine target density of snags and hardwood trees. To investigate their variability at relevant scales for silviculture, we examined snag and hardwood densities and sizes in 20 old-growth units in northern and southern aspects in the Coast Range and the Willamette Valley foothills of Oregon. Snag densities varied largely between subregions and aspects, with aspect affecting densities more than subregion. In the Coast Range, snag density was 2.8 times greater on northern aspects than on southern aspects, whereas in the Willamette Valley foothills snag density was 1.4 times greater on northern aspects than on southern aspects. Density of snags larger than 101.6 cm in diameter was very low. Hardwood densities were also greater on northern aspects than on southern aspects. The negative exponential distribution of hardwood density frequency by size classes could be explained by cohort growth under a wide range of competitive pressures or repeated-recruitment events. Aspect and subregion should be taken into account when defining management targets. Allowing for flexibility at these smaller spatial scales would better reflect the variability in ecological conditions and land use history that led to the development of old-growth stands.\",\"PeriodicalId\":51220,\"journal\":{\"name\":\"Western Journal of Applied Forestry\",\"volume\":\"27 1\",\"pages\":\"12-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/WJAF/27.1.12\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Western Journal of Applied Forestry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/WJAF/27.1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Western Journal of Applied Forestry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/WJAF/27.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mesoscale Variation in Snag and Hardwood Densities and Sizes in Old-Growth Forests in Western Oregon
Snags and hardwoods contribute to biological, structural, and functional diversity in old-growth forests. In the US Pacific Northwest, only general knowledge about regional patterns is available to determine target density of snags and hardwood trees. To investigate their variability at relevant scales for silviculture, we examined snag and hardwood densities and sizes in 20 old-growth units in northern and southern aspects in the Coast Range and the Willamette Valley foothills of Oregon. Snag densities varied largely between subregions and aspects, with aspect affecting densities more than subregion. In the Coast Range, snag density was 2.8 times greater on northern aspects than on southern aspects, whereas in the Willamette Valley foothills snag density was 1.4 times greater on northern aspects than on southern aspects. Density of snags larger than 101.6 cm in diameter was very low. Hardwood densities were also greater on northern aspects than on southern aspects. The negative exponential distribution of hardwood density frequency by size classes could be explained by cohort growth under a wide range of competitive pressures or repeated-recruitment events. Aspect and subregion should be taken into account when defining management targets. Allowing for flexibility at these smaller spatial scales would better reflect the variability in ecological conditions and land use history that led to the development of old-growth stands.