Enling Tang, Zhen Zhang, Chuang Chen, Yafei Han, Mengzhou Chang, K. Guo, Liping He
{"title":"细长体高速通过冰与水混合物的动力响应","authors":"Enling Tang, Zhen Zhang, Chuang Chen, Yafei Han, Mengzhou Chang, K. Guo, Liping He","doi":"10.1093/jom/ufac016","DOIUrl":null,"url":null,"abstract":"In the process of underwater motion, the trajectory of the projectile will be greatly disturbed due to the complicated underwater environment and cavitation effect. In order to study the effect of the ice water mixture on projectile motion, the experiments of a titanium alloy slender body with a truncated conical and plat warhead passing through ice and water mixture have been performed by using a one-stage light gas gun loading system, an overpressure sensor measurement system and a high-speed camera acquisition system in this paper. The experimental results show that the volume of the cavity generated by the slender body with a small length-to-diameter ratio is larger, and the slender body deflects in the process of movement. For a slender body with a large length-to-diameter ratio, the cavity formed is closer to the central axis and the maximum radial size of the cavity. No matter the warhead shapes are truncated conical or plat warhead, the diameter and lasting time of the cavity increase with the increase of the slender body's velocities. Under the condition that the length-to-diameter ratio and the velocity of the slender bodies are similar, the overall evolutionary trend of the overpressure generated by two kinds of slender bodies is similar. But the fluctuation range of the overpressure amplitude of the plat warhead is small, the curve oscillation amplitude of the adjacent time is large and the peak value of the overpressure for the truncated conical warhead is large. Under the same ratio of length to diameter, the velocity has no obvious influence on the trajectory of the slender body after hitting the ice particles. When the slender body collides with ice particles, the deflection angle of its trajectory is larger than that of impacting on the edge of ice particles. When the slender body collides with the ice particles, the interaction between the ice particles and the slender body is large, and the deflection angle of the slender body is larger after impact.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic response of slender body passing through ice and water mixture at high velocity\",\"authors\":\"Enling Tang, Zhen Zhang, Chuang Chen, Yafei Han, Mengzhou Chang, K. Guo, Liping He\",\"doi\":\"10.1093/jom/ufac016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the process of underwater motion, the trajectory of the projectile will be greatly disturbed due to the complicated underwater environment and cavitation effect. In order to study the effect of the ice water mixture on projectile motion, the experiments of a titanium alloy slender body with a truncated conical and plat warhead passing through ice and water mixture have been performed by using a one-stage light gas gun loading system, an overpressure sensor measurement system and a high-speed camera acquisition system in this paper. The experimental results show that the volume of the cavity generated by the slender body with a small length-to-diameter ratio is larger, and the slender body deflects in the process of movement. For a slender body with a large length-to-diameter ratio, the cavity formed is closer to the central axis and the maximum radial size of the cavity. No matter the warhead shapes are truncated conical or plat warhead, the diameter and lasting time of the cavity increase with the increase of the slender body's velocities. Under the condition that the length-to-diameter ratio and the velocity of the slender bodies are similar, the overall evolutionary trend of the overpressure generated by two kinds of slender bodies is similar. But the fluctuation range of the overpressure amplitude of the plat warhead is small, the curve oscillation amplitude of the adjacent time is large and the peak value of the overpressure for the truncated conical warhead is large. Under the same ratio of length to diameter, the velocity has no obvious influence on the trajectory of the slender body after hitting the ice particles. When the slender body collides with ice particles, the deflection angle of its trajectory is larger than that of impacting on the edge of ice particles. When the slender body collides with the ice particles, the interaction between the ice particles and the slender body is large, and the deflection angle of the slender body is larger after impact.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufac016\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Dynamic response of slender body passing through ice and water mixture at high velocity
In the process of underwater motion, the trajectory of the projectile will be greatly disturbed due to the complicated underwater environment and cavitation effect. In order to study the effect of the ice water mixture on projectile motion, the experiments of a titanium alloy slender body with a truncated conical and plat warhead passing through ice and water mixture have been performed by using a one-stage light gas gun loading system, an overpressure sensor measurement system and a high-speed camera acquisition system in this paper. The experimental results show that the volume of the cavity generated by the slender body with a small length-to-diameter ratio is larger, and the slender body deflects in the process of movement. For a slender body with a large length-to-diameter ratio, the cavity formed is closer to the central axis and the maximum radial size of the cavity. No matter the warhead shapes are truncated conical or plat warhead, the diameter and lasting time of the cavity increase with the increase of the slender body's velocities. Under the condition that the length-to-diameter ratio and the velocity of the slender bodies are similar, the overall evolutionary trend of the overpressure generated by two kinds of slender bodies is similar. But the fluctuation range of the overpressure amplitude of the plat warhead is small, the curve oscillation amplitude of the adjacent time is large and the peak value of the overpressure for the truncated conical warhead is large. Under the same ratio of length to diameter, the velocity has no obvious influence on the trajectory of the slender body after hitting the ice particles. When the slender body collides with ice particles, the deflection angle of its trajectory is larger than that of impacting on the edge of ice particles. When the slender body collides with the ice particles, the interaction between the ice particles and the slender body is large, and the deflection angle of the slender body is larger after impact.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.