{"title":"基于软鳍的水下机器人波动运动的实验与数值研究","authors":"Yu-Chih Lin, Dai Zhang","doi":"10.1093/jom/ufac021","DOIUrl":null,"url":null,"abstract":"An undulatory fin bionic underwater robot that is able to mimic the undulation motions of the median and/or the paired fin of fish is designed and analyzed. A simplified rays-membrane structure system has been developed in order to save computational cost in finite element analysis. The undulatory motion of the soft fins in the water is experimentally measured by using two cameras and the DLTdv system. The dynamic characteristics of the fin structure and the hydrodynamics of the fluid are analyzed by a fluid-structure interaction model developed by the commercial software ANSYS, and the results are compared to those of the experiment for validation. The fin motion of different fin amplitudes (ray swing angles), membrane dimensions and phase difference of adjacent rays are compared to realize the influence of robot design on the motion. It is found in the results that the displacements of the points on the fin membrane obtained by the finite element analysis have the same trend as those by the experiment; hence, the finite element model is verified. It is indicated by the finite element analysis results that the stress of the points on the fin membrane increases with the amplitude. The maximum velocity in one section plane is largest for the 40 mm width fin. The average stress on the fin with 45° phase difference is larger than that of 90° phase difference. Because of the complexity of the soft fin's material behavior and fluid-structure interaction analysis, the finite element analysis model developed in this study has a significant contribution for the soft-fin-based underwater robot design.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental and numerical investigations on undulatory motion of a soft-fin-based underwater robot\",\"authors\":\"Yu-Chih Lin, Dai Zhang\",\"doi\":\"10.1093/jom/ufac021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An undulatory fin bionic underwater robot that is able to mimic the undulation motions of the median and/or the paired fin of fish is designed and analyzed. A simplified rays-membrane structure system has been developed in order to save computational cost in finite element analysis. The undulatory motion of the soft fins in the water is experimentally measured by using two cameras and the DLTdv system. The dynamic characteristics of the fin structure and the hydrodynamics of the fluid are analyzed by a fluid-structure interaction model developed by the commercial software ANSYS, and the results are compared to those of the experiment for validation. The fin motion of different fin amplitudes (ray swing angles), membrane dimensions and phase difference of adjacent rays are compared to realize the influence of robot design on the motion. It is found in the results that the displacements of the points on the fin membrane obtained by the finite element analysis have the same trend as those by the experiment; hence, the finite element model is verified. It is indicated by the finite element analysis results that the stress of the points on the fin membrane increases with the amplitude. The maximum velocity in one section plane is largest for the 40 mm width fin. The average stress on the fin with 45° phase difference is larger than that of 90° phase difference. Because of the complexity of the soft fin's material behavior and fluid-structure interaction analysis, the finite element analysis model developed in this study has a significant contribution for the soft-fin-based underwater robot design.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufac021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Experimental and numerical investigations on undulatory motion of a soft-fin-based underwater robot
An undulatory fin bionic underwater robot that is able to mimic the undulation motions of the median and/or the paired fin of fish is designed and analyzed. A simplified rays-membrane structure system has been developed in order to save computational cost in finite element analysis. The undulatory motion of the soft fins in the water is experimentally measured by using two cameras and the DLTdv system. The dynamic characteristics of the fin structure and the hydrodynamics of the fluid are analyzed by a fluid-structure interaction model developed by the commercial software ANSYS, and the results are compared to those of the experiment for validation. The fin motion of different fin amplitudes (ray swing angles), membrane dimensions and phase difference of adjacent rays are compared to realize the influence of robot design on the motion. It is found in the results that the displacements of the points on the fin membrane obtained by the finite element analysis have the same trend as those by the experiment; hence, the finite element model is verified. It is indicated by the finite element analysis results that the stress of the points on the fin membrane increases with the amplitude. The maximum velocity in one section plane is largest for the 40 mm width fin. The average stress on the fin with 45° phase difference is larger than that of 90° phase difference. Because of the complexity of the soft fin's material behavior and fluid-structure interaction analysis, the finite element analysis model developed in this study has a significant contribution for the soft-fin-based underwater robot design.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.