高雷诺数自由表面流动分析

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Mechanics Pub Date : 2022-01-01 DOI:10.1093/jom/ufac036
D. Young, M. C. Lin, C. Tsai
{"title":"高雷诺数自由表面流动分析","authors":"D. Young, M. C. Lin, C. Tsai","doi":"10.1093/jom/ufac036","DOIUrl":null,"url":null,"abstract":"In this paper, we will combine an upwind radial basis function-finite element with direct velocity–pressure formulation to study the two-dimensional Navier-Stokes equations with free surface flows. We will examine this formulation in an improved mixed-order finite element and localized radial basis function method. A particle tracking method and the arbitrary Lagrangian-Eulerian scheme will then be applied to simulate the two-dimensional high Reynolds free surface flows. An upwind improved finite element formulation based on a localized radial basis function differential quadrature (LRBFDQ) method is used to deal with high Reynolds number convection dominated flows. This study successfully obtained very high Reynolds number free surface flows, up to Re = 500 000. Finally, we will demonstrate and discuss the capability and feasibility of the proposed model by simulating two complex free surface flow problems: (1) a highly nonlinear free oscillation flow and (2) a large amplitude sloshing problem. Using even very coarse grids in all computing scenarios, we have achieved good results in accuracy and efficiency.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of high Reynolds free surface flows\",\"authors\":\"D. Young, M. C. Lin, C. Tsai\",\"doi\":\"10.1093/jom/ufac036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will combine an upwind radial basis function-finite element with direct velocity–pressure formulation to study the two-dimensional Navier-Stokes equations with free surface flows. We will examine this formulation in an improved mixed-order finite element and localized radial basis function method. A particle tracking method and the arbitrary Lagrangian-Eulerian scheme will then be applied to simulate the two-dimensional high Reynolds free surface flows. An upwind improved finite element formulation based on a localized radial basis function differential quadrature (LRBFDQ) method is used to deal with high Reynolds number convection dominated flows. This study successfully obtained very high Reynolds number free surface flows, up to Re = 500 000. Finally, we will demonstrate and discuss the capability and feasibility of the proposed model by simulating two complex free surface flow problems: (1) a highly nonlinear free oscillation flow and (2) a large amplitude sloshing problem. Using even very coarse grids in all computing scenarios, we have achieved good results in accuracy and efficiency.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufac036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

本文将迎风径向基函数-有限元与直接速度-压力公式相结合,研究具有自由表面流动的二维Navier-Stokes方程。我们将用一种改进的混合阶有限元和局部径向基函数方法来检验这个公式。然后采用粒子跟踪法和任意拉格朗日-欧拉格式来模拟二维高雷诺数自由表面流动。采用一种基于局部径向基函数微分正交(LRBFDQ)方法的迎风改进有限元公式来处理高雷诺数对流占主导地位的流动。本研究成功地获得了极高雷诺数的自由表面流动,最高可达Re = 50 000。最后,我们将通过模拟两个复杂的自由表面流动问题来证明和讨论所提出模型的能力和可行性:(1)高度非线性自由振荡流动和(2)大振幅晃动问题。即使在所有计算场景中使用非常粗糙的网格,我们也在精度和效率方面取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of high Reynolds free surface flows
In this paper, we will combine an upwind radial basis function-finite element with direct velocity–pressure formulation to study the two-dimensional Navier-Stokes equations with free surface flows. We will examine this formulation in an improved mixed-order finite element and localized radial basis function method. A particle tracking method and the arbitrary Lagrangian-Eulerian scheme will then be applied to simulate the two-dimensional high Reynolds free surface flows. An upwind improved finite element formulation based on a localized radial basis function differential quadrature (LRBFDQ) method is used to deal with high Reynolds number convection dominated flows. This study successfully obtained very high Reynolds number free surface flows, up to Re = 500 000. Finally, we will demonstrate and discuss the capability and feasibility of the proposed model by simulating two complex free surface flow problems: (1) a highly nonlinear free oscillation flow and (2) a large amplitude sloshing problem. Using even very coarse grids in all computing scenarios, we have achieved good results in accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
期刊最新文献
Structural damage identification using an optimization technique based on generalized flexibility matrix Solder die attach lifetime characterization of SOT-227 power MOSFET module in a three-phase inverter under power cycling Data-driven numerical simulation with extended Kalman filtering and long short-term memory networks for highway traffic flow prediction Nanoparticles separation by different conditions at asymmetric flow field- flow fractionation Mechanical Instability of Heavy Column with Rotational Spring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1