J. Liaw, Bing-Xian Chen, Yun-Cheng Ku, Chun-Yi Yang, Chun-Wei Lin, M. Kuo
{"title":"光涡旋光束对金纳米粒子的光学操纵","authors":"J. Liaw, Bing-Xian Chen, Yun-Cheng Ku, Chun-Yi Yang, Chun-Wei Lin, M. Kuo","doi":"10.1093/jom/ufac047","DOIUrl":null,"url":null,"abstract":"The optomechanical manipulation of an optical vortex beam (Bessel beam) upon a single gold nanoparticle (GNP) was studied theoretically. This structured light carries spin angular momentum (SAM) and orbital angular momentum (OAM) simultaneously via the spin-orbit interaction (SOI) of light. Due to the plasmon-enhanced light absorption and scattering of GNP, the SAM and OAM of photons are transferred to GNP, exhibited by the spin and orbital motions of GNP. The optical force and torque upon GNP are analyzed through the surface integrals of Maxwell's stress tensor. We found that there are specific stable circular orbits of GNP through the simulation of GNP's equation of motion; the revolution direction depends on the sign of the order of Bessel beam. If the order of Bessel beam is a positive integer, the GNP performs an orbital motion with a counterclockwise revolution. On the contrary, for a Bessel beam of a negative order, a clockwise revolution of GNP is induced. Additionally, the spin direction of GNP depends on the handedness of light: right-hand or left-hand circular polarization.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optical manipulation of optical vortex beam on gold nanoparticle\",\"authors\":\"J. Liaw, Bing-Xian Chen, Yun-Cheng Ku, Chun-Yi Yang, Chun-Wei Lin, M. Kuo\",\"doi\":\"10.1093/jom/ufac047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optomechanical manipulation of an optical vortex beam (Bessel beam) upon a single gold nanoparticle (GNP) was studied theoretically. This structured light carries spin angular momentum (SAM) and orbital angular momentum (OAM) simultaneously via the spin-orbit interaction (SOI) of light. Due to the plasmon-enhanced light absorption and scattering of GNP, the SAM and OAM of photons are transferred to GNP, exhibited by the spin and orbital motions of GNP. The optical force and torque upon GNP are analyzed through the surface integrals of Maxwell's stress tensor. We found that there are specific stable circular orbits of GNP through the simulation of GNP's equation of motion; the revolution direction depends on the sign of the order of Bessel beam. If the order of Bessel beam is a positive integer, the GNP performs an orbital motion with a counterclockwise revolution. On the contrary, for a Bessel beam of a negative order, a clockwise revolution of GNP is induced. Additionally, the spin direction of GNP depends on the handedness of light: right-hand or left-hand circular polarization.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufac047\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac047","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Optical manipulation of optical vortex beam on gold nanoparticle
The optomechanical manipulation of an optical vortex beam (Bessel beam) upon a single gold nanoparticle (GNP) was studied theoretically. This structured light carries spin angular momentum (SAM) and orbital angular momentum (OAM) simultaneously via the spin-orbit interaction (SOI) of light. Due to the plasmon-enhanced light absorption and scattering of GNP, the SAM and OAM of photons are transferred to GNP, exhibited by the spin and orbital motions of GNP. The optical force and torque upon GNP are analyzed through the surface integrals of Maxwell's stress tensor. We found that there are specific stable circular orbits of GNP through the simulation of GNP's equation of motion; the revolution direction depends on the sign of the order of Bessel beam. If the order of Bessel beam is a positive integer, the GNP performs an orbital motion with a counterclockwise revolution. On the contrary, for a Bessel beam of a negative order, a clockwise revolution of GNP is induced. Additionally, the spin direction of GNP depends on the handedness of light: right-hand or left-hand circular polarization.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.