比斯开湾的凤尾鱼和沙丁鱼的生长下降有不同的原因

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2023-08-07 DOI:10.1111/eva.13564
Andy Bo?ns, Bruno Ernande, Pierre Petitgas, Christophe Lebigre
{"title":"比斯开湾的凤尾鱼和沙丁鱼的生长下降有不同的原因","authors":"Andy Bo?ns,&nbsp;Bruno Ernande,&nbsp;Pierre Petitgas,&nbsp;Christophe Lebigre","doi":"10.1111/eva.13564","DOIUrl":null,"url":null,"abstract":"<p>Declines in individuals' growth in exploited fish species are generally attributed to evolutionary consequences of size-selective fishing or to plastic responses due to constraints set by changing environmental conditions dampening individuals' growth. However, other processes such as growth compensation and non-directional selection can occur and their importance on the overall phenotypic response of exploited populations has largely been ignored. Using otolith growth data collected in European anchovy and sardine of the Bay of Biscay (18 cohorts from 2000 to 2018), we parameterized the breeder's equation to determine whether declines in size-at-age in these species were due to an adaptive response (i.e. related to directional or non-directional selection differentials within parental cohorts) or a plastic response (i.e. related to changes in environmental). We found that growth at age-0 in anchovy declined between parents and their offspring when biomass increased and the selective disappearance of large individuals was high in parents. Therefore, an adaptive response probably occurred in years with high fishing effort and the large increase in biomass after the collapse of this stock maintained this adaptive response subsequently. In sardine offspring, higher growth at age-0 was associated with increasing biomass between parents and offspring, suggesting a plastic response to a bottom-up process (i.e. a change in food quantity or quality). Parental cohorts in which selection favoured individuals with high growth compensation produced offspring high catch up growth rates, which may explain the smaller decline in growth in sardine relative to anchovy. Finally, on non-directional selection differentials were not significantly related to the changes in growth at age-0 and growth compensation at age-1 in both species. Although anchovy and sardine have similar ecologies, the mechanisms underlying the declines in their growth are clearly different. The consequences of the exploitation of natural populations could be long lasting if density-dependent processes follow adaptive changes.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"16 8","pages":"1393-1411"},"PeriodicalIF":3.5000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.13564","citationCount":"2","resultStr":"{\"title\":\"Different mechanisms underpin the decline in growth of anchovies and sardines of the Bay of Biscay\",\"authors\":\"Andy Bo?ns,&nbsp;Bruno Ernande,&nbsp;Pierre Petitgas,&nbsp;Christophe Lebigre\",\"doi\":\"10.1111/eva.13564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Declines in individuals' growth in exploited fish species are generally attributed to evolutionary consequences of size-selective fishing or to plastic responses due to constraints set by changing environmental conditions dampening individuals' growth. However, other processes such as growth compensation and non-directional selection can occur and their importance on the overall phenotypic response of exploited populations has largely been ignored. Using otolith growth data collected in European anchovy and sardine of the Bay of Biscay (18 cohorts from 2000 to 2018), we parameterized the breeder's equation to determine whether declines in size-at-age in these species were due to an adaptive response (i.e. related to directional or non-directional selection differentials within parental cohorts) or a plastic response (i.e. related to changes in environmental). We found that growth at age-0 in anchovy declined between parents and their offspring when biomass increased and the selective disappearance of large individuals was high in parents. Therefore, an adaptive response probably occurred in years with high fishing effort and the large increase in biomass after the collapse of this stock maintained this adaptive response subsequently. In sardine offspring, higher growth at age-0 was associated with increasing biomass between parents and offspring, suggesting a plastic response to a bottom-up process (i.e. a change in food quantity or quality). Parental cohorts in which selection favoured individuals with high growth compensation produced offspring high catch up growth rates, which may explain the smaller decline in growth in sardine relative to anchovy. Finally, on non-directional selection differentials were not significantly related to the changes in growth at age-0 and growth compensation at age-1 in both species. Although anchovy and sardine have similar ecologies, the mechanisms underlying the declines in their growth are clearly different. The consequences of the exploitation of natural populations could be long lasting if density-dependent processes follow adaptive changes.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":\"16 8\",\"pages\":\"1393-1411\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.13564\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.13564\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.13564","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

在被捕捞的鱼类中,个体生长的下降通常归因于尺寸选择性捕捞的进化后果,或者归因于环境条件变化对个体生长的限制所造成的塑料反应。然而,生长补偿和非定向选择等其他过程也可能发生,它们对被剥削群体整体表型反应的重要性在很大程度上被忽视了。利用比斯开湾欧洲凤尾鱼和沙丁鱼的耳石生长数据(2000年至2018年的18个队列),我们参数化了饲养者的方程,以确定这些物种的年龄大小下降是由于适应性反应(即与亲代队列内的定向或非定向选择差异有关)还是可塑性反应(即与环境变化有关)。我们发现,当生物量增加时,0岁鳀鱼的生长在父母和后代之间下降,父母中大个体的选择性消失率很高。因此,适应性反应可能发生在渔获量高的年份,种群崩溃后生物量的大量增加随后维持了这种适应性反应。在沙丁鱼后代中,0岁时的较高生长与父母和后代之间的生物量增加有关,这表明对自下而上过程的可塑性反应(即食物数量或质量的变化)。具有高生长补偿的个体在自然选择中受到青睐的亲代群体产生了高追赶增长率的后代,这可能解释了沙丁鱼相对于凤尾鱼的生长下降较小。最后,在非定向选择上,两种植物的差异与0岁时生长和1岁时生长补偿的变化没有显著相关。虽然凤尾鱼和沙丁鱼有着相似的生态环境,但它们生长速度下降的机制却明显不同。如果依赖于密度的过程遵循适应性变化,开发自然种群的后果可能是持久的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Different mechanisms underpin the decline in growth of anchovies and sardines of the Bay of Biscay

Declines in individuals' growth in exploited fish species are generally attributed to evolutionary consequences of size-selective fishing or to plastic responses due to constraints set by changing environmental conditions dampening individuals' growth. However, other processes such as growth compensation and non-directional selection can occur and their importance on the overall phenotypic response of exploited populations has largely been ignored. Using otolith growth data collected in European anchovy and sardine of the Bay of Biscay (18 cohorts from 2000 to 2018), we parameterized the breeder's equation to determine whether declines in size-at-age in these species were due to an adaptive response (i.e. related to directional or non-directional selection differentials within parental cohorts) or a plastic response (i.e. related to changes in environmental). We found that growth at age-0 in anchovy declined between parents and their offspring when biomass increased and the selective disappearance of large individuals was high in parents. Therefore, an adaptive response probably occurred in years with high fishing effort and the large increase in biomass after the collapse of this stock maintained this adaptive response subsequently. In sardine offspring, higher growth at age-0 was associated with increasing biomass between parents and offspring, suggesting a plastic response to a bottom-up process (i.e. a change in food quantity or quality). Parental cohorts in which selection favoured individuals with high growth compensation produced offspring high catch up growth rates, which may explain the smaller decline in growth in sardine relative to anchovy. Finally, on non-directional selection differentials were not significantly related to the changes in growth at age-0 and growth compensation at age-1 in both species. Although anchovy and sardine have similar ecologies, the mechanisms underlying the declines in their growth are clearly different. The consequences of the exploitation of natural populations could be long lasting if density-dependent processes follow adaptive changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Tracking the North American Asian Longhorned Beetle Invasion With Genomics Prioritizing Conservation Areas for the Hyacinth Macaw (Anodorhynchus hyacinthinus) in Brazil From Low-Coverage Genomic Data Genomic Data Support the Revision of Provenance Regions Delimitation for Scots Pine Sex Pheromone Mediates Resource Partitioning Between Drosophila melanogaster and D. suzukii Estimating Demographic Parameters for Bearded Seals, Erignathus barbatus, in Alaska Using Close-Kin Mark-Recapture Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1