Max Nanao, Shibom Basu, Ulrich Zander, Thierry Giraud, John Surr, Matias Guijarro, Mario Lentini, Franck Felisaz, Jeremy Sinoir, Christian Morawe, Amparo Vivo, Antonia Beteva, Marcus Oscarsson, Hugo Caserotto, Fabien Dobias, David Flot, Didier Nurizzo, Jonathan Gigmes, Nicolas Foos, Ralf Siebrecht, Thomas Roth, Pascal Theveneau, Olof Svensson, Gergely Papp, Bernard Lavault, Florent Cipriani, Ray Barrett, Carole Clavel, Gordon Leonard
{"title":"ID23-2:ESRF 用于大分子晶体学的自动化高性能微聚焦光束线。","authors":"Max Nanao, Shibom Basu, Ulrich Zander, Thierry Giraud, John Surr, Matias Guijarro, Mario Lentini, Franck Felisaz, Jeremy Sinoir, Christian Morawe, Amparo Vivo, Antonia Beteva, Marcus Oscarsson, Hugo Caserotto, Fabien Dobias, David Flot, Didier Nurizzo, Jonathan Gigmes, Nicolas Foos, Ralf Siebrecht, Thomas Roth, Pascal Theveneau, Olof Svensson, Gergely Papp, Bernard Lavault, Florent Cipriani, Ray Barrett, Carole Clavel, Gordon Leonard","doi":"10.1107/S1600577522000984","DOIUrl":null,"url":null,"abstract":"<p><p>ID23-2 is a fixed-energy (14.2 keV) microfocus beamline at the European Synchrotron Radiation Facility (ESRF) dedicated to macromolecular crystallography. The optics and sample environment have recently been redesigned and rebuilt to take full advantage of the upgrade of the ESRF to the fourth generation Extremely Brilliant Source (ESRF-EBS). The upgraded beamline now makes use of two sets of compound refractive lenses and multilayer mirrors to obtain a highly intense (>10<sup>13</sup> photons s<sup>-1</sup>) focused microbeam (minimum size 1.5 µm × 3 µm full width at half-maximum). The sample environment now includes a FLEX-HCD sample changer/storage system, as well as a state-of-the-art MD3Up high-precision multi-axis diffractometer. Automatic data reduction and analysis are also provided for more advanced protocols such as synchrotron serial crystallographic experiments.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":"29 1","pages":"581-590"},"PeriodicalIF":2.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900849/pdf/","citationCount":"0","resultStr":"{\"title\":\"ID23-2: an automated and high-performance microfocus beamline for macromolecular crystallography at the ESRF.\",\"authors\":\"Max Nanao, Shibom Basu, Ulrich Zander, Thierry Giraud, John Surr, Matias Guijarro, Mario Lentini, Franck Felisaz, Jeremy Sinoir, Christian Morawe, Amparo Vivo, Antonia Beteva, Marcus Oscarsson, Hugo Caserotto, Fabien Dobias, David Flot, Didier Nurizzo, Jonathan Gigmes, Nicolas Foos, Ralf Siebrecht, Thomas Roth, Pascal Theveneau, Olof Svensson, Gergely Papp, Bernard Lavault, Florent Cipriani, Ray Barrett, Carole Clavel, Gordon Leonard\",\"doi\":\"10.1107/S1600577522000984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ID23-2 is a fixed-energy (14.2 keV) microfocus beamline at the European Synchrotron Radiation Facility (ESRF) dedicated to macromolecular crystallography. The optics and sample environment have recently been redesigned and rebuilt to take full advantage of the upgrade of the ESRF to the fourth generation Extremely Brilliant Source (ESRF-EBS). The upgraded beamline now makes use of two sets of compound refractive lenses and multilayer mirrors to obtain a highly intense (>10<sup>13</sup> photons s<sup>-1</sup>) focused microbeam (minimum size 1.5 µm × 3 µm full width at half-maximum). The sample environment now includes a FLEX-HCD sample changer/storage system, as well as a state-of-the-art MD3Up high-precision multi-axis diffractometer. Automatic data reduction and analysis are also provided for more advanced protocols such as synchrotron serial crystallographic experiments.</p>\",\"PeriodicalId\":17114,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\"29 1\",\"pages\":\"581-590\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900849/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577522000984\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577522000984","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
ID23-2: an automated and high-performance microfocus beamline for macromolecular crystallography at the ESRF.
ID23-2 is a fixed-energy (14.2 keV) microfocus beamline at the European Synchrotron Radiation Facility (ESRF) dedicated to macromolecular crystallography. The optics and sample environment have recently been redesigned and rebuilt to take full advantage of the upgrade of the ESRF to the fourth generation Extremely Brilliant Source (ESRF-EBS). The upgraded beamline now makes use of two sets of compound refractive lenses and multilayer mirrors to obtain a highly intense (>1013 photons s-1) focused microbeam (minimum size 1.5 µm × 3 µm full width at half-maximum). The sample environment now includes a FLEX-HCD sample changer/storage system, as well as a state-of-the-art MD3Up high-precision multi-axis diffractometer. Automatic data reduction and analysis are also provided for more advanced protocols such as synchrotron serial crystallographic experiments.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.