{"title":"光辅助导电原子力显微镜研究Ag-ZnO薄膜的电子输运性能","authors":"Yidong Zhang","doi":"10.1108/mi-02-2023-0017","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to study the electronic transport performance of Ag-ZnO film under dark and UV light conditions.\n\n\nDesign/methodology/approach\nAg-doped ZnO thin films were prepared on fluorine thin oxide (FTO) substrates by sol-gel method. The crystal structure of ZnO and Ag-ZnO powders was tested by X-ray diffraction with Cu Kα radiation. The absorption spectra of ZnO and Ag-ZnO films were recorded by a UV–visible spectrophotometer. The micro electrical transport performance of Ag-ZnO thin films in dark and light state was investigated by photoassisted conductive atomic force microscope (PC-AFM).\n\n\nFindings\nThe results show that the dark reverse current of Ag-ZnO films does not increase, but the reverse current increases significantly under illumination, indicating that the response of Ag-ZnO films to light is greatly improved, owing to the formation of Ohmic contact.\n\n\nOriginality/value\nTo the best of the author’s knowledge, the micro electrical transport performance of Ag-ZnO thin films in dark and light state was firstly investigated by PC-AFM.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on electronic transport performance of Ag-ZnO film by photoassisted conductive atomic force microscopy\",\"authors\":\"Yidong Zhang\",\"doi\":\"10.1108/mi-02-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this paper is to study the electronic transport performance of Ag-ZnO film under dark and UV light conditions.\\n\\n\\nDesign/methodology/approach\\nAg-doped ZnO thin films were prepared on fluorine thin oxide (FTO) substrates by sol-gel method. The crystal structure of ZnO and Ag-ZnO powders was tested by X-ray diffraction with Cu Kα radiation. The absorption spectra of ZnO and Ag-ZnO films were recorded by a UV–visible spectrophotometer. The micro electrical transport performance of Ag-ZnO thin films in dark and light state was investigated by photoassisted conductive atomic force microscope (PC-AFM).\\n\\n\\nFindings\\nThe results show that the dark reverse current of Ag-ZnO films does not increase, but the reverse current increases significantly under illumination, indicating that the response of Ag-ZnO films to light is greatly improved, owing to the formation of Ohmic contact.\\n\\n\\nOriginality/value\\nTo the best of the author’s knowledge, the micro electrical transport performance of Ag-ZnO thin films in dark and light state was firstly investigated by PC-AFM.\\n\",\"PeriodicalId\":49817,\"journal\":{\"name\":\"Microelectronics International\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/mi-02-2023-0017\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-02-2023-0017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Study on electronic transport performance of Ag-ZnO film by photoassisted conductive atomic force microscopy
Purpose
The purpose of this paper is to study the electronic transport performance of Ag-ZnO film under dark and UV light conditions.
Design/methodology/approach
Ag-doped ZnO thin films were prepared on fluorine thin oxide (FTO) substrates by sol-gel method. The crystal structure of ZnO and Ag-ZnO powders was tested by X-ray diffraction with Cu Kα radiation. The absorption spectra of ZnO and Ag-ZnO films were recorded by a UV–visible spectrophotometer. The micro electrical transport performance of Ag-ZnO thin films in dark and light state was investigated by photoassisted conductive atomic force microscope (PC-AFM).
Findings
The results show that the dark reverse current of Ag-ZnO films does not increase, but the reverse current increases significantly under illumination, indicating that the response of Ag-ZnO films to light is greatly improved, owing to the formation of Ohmic contact.
Originality/value
To the best of the author’s knowledge, the micro electrical transport performance of Ag-ZnO thin films in dark and light state was firstly investigated by PC-AFM.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.