{"title":"一种用于本体感觉假体的节能、动态电压缩放神经刺激器","authors":"I. Williams, T. Constandinou","doi":"10.1109/ISCAS.2012.6271420","DOIUrl":null,"url":null,"abstract":"This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm2 for an 8 channel implementation.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"7 1","pages":"129-139"},"PeriodicalIF":3.8000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ISCAS.2012.6271420","citationCount":"95","resultStr":"{\"title\":\"An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis\",\"authors\":\"I. Williams, T. Constandinou\",\"doi\":\"10.1109/ISCAS.2012.6271420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm2 for an 8 channel implementation.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":\"7 1\",\"pages\":\"129-139\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ISCAS.2012.6271420\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2012.6271420\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/ISCAS.2012.6271420","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis
This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm2 for an 8 channel implementation.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.