R. James, J. Garside, Michael Hopkins, L. Plana, S. Temple, Simon Davidson, S. Furber
{"title":"实时应用的内毛细胞与听神经并行分布模型","authors":"R. James, J. Garside, Michael Hopkins, L. Plana, S. Temple, Simon Davidson, S. Furber","doi":"10.1109/BIOCAS.2017.8325171","DOIUrl":null,"url":null,"abstract":"This paper summarises recent efforts into implementing a model of the inner hair cell and auditory nerve on a neuromorphic hardware platform, the SpiNNaker machine. Such an implementation exploits the massive parallelism of the target architecture to obtain real-time modelling to a biologically realistic number of human auditory nerve fibres. The potential for incorporating this implementation into a full-scale digital realtime model of the human auditory pathway is then discussed.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"1 1","pages":"1-4"},"PeriodicalIF":3.8000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BIOCAS.2017.8325171","citationCount":"3","resultStr":"{\"title\":\"Parallel distribution of an inner hair cell and auditory nerve model for real-time application\",\"authors\":\"R. James, J. Garside, Michael Hopkins, L. Plana, S. Temple, Simon Davidson, S. Furber\",\"doi\":\"10.1109/BIOCAS.2017.8325171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarises recent efforts into implementing a model of the inner hair cell and auditory nerve on a neuromorphic hardware platform, the SpiNNaker machine. Such an implementation exploits the massive parallelism of the target architecture to obtain real-time modelling to a biologically realistic number of human auditory nerve fibres. The potential for incorporating this implementation into a full-scale digital realtime model of the human auditory pathway is then discussed.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/BIOCAS.2017.8325171\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325171\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325171","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Parallel distribution of an inner hair cell and auditory nerve model for real-time application
This paper summarises recent efforts into implementing a model of the inner hair cell and auditory nerve on a neuromorphic hardware platform, the SpiNNaker machine. Such an implementation exploits the massive parallelism of the target architecture to obtain real-time modelling to a biologically realistic number of human auditory nerve fibres. The potential for incorporating this implementation into a full-scale digital realtime model of the human auditory pathway is then discussed.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.