实时应用的内毛细胞与听神经并行分布模型

IF 3.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Circuits and Systems Pub Date : 2017-01-01 DOI:10.1109/BIOCAS.2017.8325171
R. James, J. Garside, Michael Hopkins, L. Plana, S. Temple, Simon Davidson, S. Furber
{"title":"实时应用的内毛细胞与听神经并行分布模型","authors":"R. James, J. Garside, Michael Hopkins, L. Plana, S. Temple, Simon Davidson, S. Furber","doi":"10.1109/BIOCAS.2017.8325171","DOIUrl":null,"url":null,"abstract":"This paper summarises recent efforts into implementing a model of the inner hair cell and auditory nerve on a neuromorphic hardware platform, the SpiNNaker machine. Such an implementation exploits the massive parallelism of the target architecture to obtain real-time modelling to a biologically realistic number of human auditory nerve fibres. The potential for incorporating this implementation into a full-scale digital realtime model of the human auditory pathway is then discussed.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"1 1","pages":"1-4"},"PeriodicalIF":3.8000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BIOCAS.2017.8325171","citationCount":"3","resultStr":"{\"title\":\"Parallel distribution of an inner hair cell and auditory nerve model for real-time application\",\"authors\":\"R. James, J. Garside, Michael Hopkins, L. Plana, S. Temple, Simon Davidson, S. Furber\",\"doi\":\"10.1109/BIOCAS.2017.8325171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarises recent efforts into implementing a model of the inner hair cell and auditory nerve on a neuromorphic hardware platform, the SpiNNaker machine. Such an implementation exploits the massive parallelism of the target architecture to obtain real-time modelling to a biologically realistic number of human auditory nerve fibres. The potential for incorporating this implementation into a full-scale digital realtime model of the human auditory pathway is then discussed.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/BIOCAS.2017.8325171\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325171\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325171","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

摘要

本文总结了最近在神经形态硬件平台SpiNNaker机器上实现内毛细胞和听神经模型的努力。这样的实现利用目标结构的大规模并行性来获得对生物上真实数量的人类听觉神经纤维的实时建模。然后讨论了将这种实现纳入人类听觉通路的全尺寸数字实时模型的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel distribution of an inner hair cell and auditory nerve model for real-time application
This paper summarises recent efforts into implementing a model of the inner hair cell and auditory nerve on a neuromorphic hardware platform, the SpiNNaker machine. Such an implementation exploits the massive parallelism of the target architecture to obtain real-time modelling to a biologically realistic number of human auditory nerve fibres. The potential for incorporating this implementation into a full-scale digital realtime model of the human auditory pathway is then discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Circuits and Systems
IEEE Transactions on Biomedical Circuits and Systems 工程技术-工程:电子与电气
CiteScore
10.00
自引率
13.70%
发文量
174
审稿时长
3 months
期刊介绍: The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.
期刊最新文献
A 1024-Channel Simultaneous Electrophysiological and Electrochemical Neural Recording System with In-Pixel Digitization and Crosstalk Compensation A 13.56-MHz 93.5%-Efficiency Optimal On/Off Timing Tracking Active Rectifier with Digital Feedback-Based Adaptive Delay Control An Ultra-Low Power Wearable BMI System with Continual Learning Capabilities Real-Time sEMG Processing with Spiking Neural Networks on a Low-Power 5K-LUT FPGA A Tiny Transformer for Low-Power Arrhythmia Classification on Microcontrollers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1