Khaoula Bouzidi, Didier Chaussy, Alessandro Gandini, Roberta Bongiovanni, Davide Beneventi
{"title":"利用浇铸成型和3D打印技术制造呋喃/纤维素复合材料的生物质浆料的开发","authors":"Khaoula Bouzidi, Didier Chaussy, Alessandro Gandini, Roberta Bongiovanni, Davide Beneventi","doi":"10.1002/pol.20230074","DOIUrl":null,"url":null,"abstract":"<p>This study aims to develop a green composite based on two biomass-based components via the curing of an oligomeric furfuryl resin coupled with 18–31 wt% cellulose powder. The curing was performed in an atmospheric pressure open air oven. The chemical composition of the used pre-polymer was characterized with Fourier transform infrared and NMR spectroscopy and its curing reaction was followed by differential scanning calorimetry. The final cured composites were characterized to investigate the effect of cellulose addition on their morphology, dimensional stability, and thermo-mechanical performances. The manufactured composite showed good thermal stability up to 200°C with a storage modulus higher than 2 GPa, and a mass loss under 3%. Moreover, the filler improved the composite dimensional stability upon crosslinking by 38% and the mechanical performances with respectively 15% and 40% increase in the Young's and flexural moduli. By the same token, cellulose prevented the typical foaming of poly(furfuryl alcohol) resins crosslinked at high temperature and low pressure. Preliminary tests highlighted the excellent processability of the developed composite, which was used to manufacture a static demonstrator coupling different fabrication techniques, that is, 3D printing (direct ink writing), high temperature compression molding and CNC machining.</p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 17","pages":"2060-2075"},"PeriodicalIF":2.7020,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of biomass-based slurry for the manufacture of furan/cellulose composite by cast molding and 3D printing\",\"authors\":\"Khaoula Bouzidi, Didier Chaussy, Alessandro Gandini, Roberta Bongiovanni, Davide Beneventi\",\"doi\":\"10.1002/pol.20230074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to develop a green composite based on two biomass-based components via the curing of an oligomeric furfuryl resin coupled with 18–31 wt% cellulose powder. The curing was performed in an atmospheric pressure open air oven. The chemical composition of the used pre-polymer was characterized with Fourier transform infrared and NMR spectroscopy and its curing reaction was followed by differential scanning calorimetry. The final cured composites were characterized to investigate the effect of cellulose addition on their morphology, dimensional stability, and thermo-mechanical performances. The manufactured composite showed good thermal stability up to 200°C with a storage modulus higher than 2 GPa, and a mass loss under 3%. Moreover, the filler improved the composite dimensional stability upon crosslinking by 38% and the mechanical performances with respectively 15% and 40% increase in the Young's and flexural moduli. By the same token, cellulose prevented the typical foaming of poly(furfuryl alcohol) resins crosslinked at high temperature and low pressure. Preliminary tests highlighted the excellent processability of the developed composite, which was used to manufacture a static demonstrator coupling different fabrication techniques, that is, 3D printing (direct ink writing), high temperature compression molding and CNC machining.</p>\",\"PeriodicalId\":199,\"journal\":{\"name\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"volume\":\"61 17\",\"pages\":\"2060-2075\"},\"PeriodicalIF\":2.7020,\"publicationDate\":\"2023-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Development of biomass-based slurry for the manufacture of furan/cellulose composite by cast molding and 3D printing
This study aims to develop a green composite based on two biomass-based components via the curing of an oligomeric furfuryl resin coupled with 18–31 wt% cellulose powder. The curing was performed in an atmospheric pressure open air oven. The chemical composition of the used pre-polymer was characterized with Fourier transform infrared and NMR spectroscopy and its curing reaction was followed by differential scanning calorimetry. The final cured composites were characterized to investigate the effect of cellulose addition on their morphology, dimensional stability, and thermo-mechanical performances. The manufactured composite showed good thermal stability up to 200°C with a storage modulus higher than 2 GPa, and a mass loss under 3%. Moreover, the filler improved the composite dimensional stability upon crosslinking by 38% and the mechanical performances with respectively 15% and 40% increase in the Young's and flexural moduli. By the same token, cellulose prevented the typical foaming of poly(furfuryl alcohol) resins crosslinked at high temperature and low pressure. Preliminary tests highlighted the excellent processability of the developed composite, which was used to manufacture a static demonstrator coupling different fabrication techniques, that is, 3D printing (direct ink writing), high temperature compression molding and CNC machining.
期刊介绍:
Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...