Paul Robert Harper, Joshua W. Moore, Thomas E. Woolley
{"title":"高校返乡学生Covid-19二次家庭传播模型研究","authors":"Paul Robert Harper, Joshua W. Moore, Thomas E. Woolley","doi":"10.1101/2020.11.11.20229559","DOIUrl":null,"url":null,"abstract":"We estimate the number of secondary Covid-19 infections caused by potentially infectious students returning from university to private homes with other occupants. Using a Monte-Carlo method and data derived from UK sources, we predict that an infectious student would, on average, infect 0.94 other household members. Or, as a rule of thumb, each infected student would generate (just less than) one secondary within-household infection. The total number of secondary cases for all returning students is dependent on the virus prevalence within the student population at the time of their departure from campus back home. Correspondingly, we provide results for prevalence ranging from 0.5% to 15%, which is based on observed minimum and maximum estimates from Cardiff University's asymptomatic testing service. Although the proposed estimation method is general and robust, the results are sensitive to the input data. We therefore provide Matlab code and a helpful online app (http://bit.ly/Secondary_infections_app) that can be used to estimate numbers of secondary infections based on local parameter values","PeriodicalId":44699,"journal":{"name":"Health Systems","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secondary Household Covid-19 Transmission Modelling of Students Returning Home from University\",\"authors\":\"Paul Robert Harper, Joshua W. Moore, Thomas E. Woolley\",\"doi\":\"10.1101/2020.11.11.20229559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We estimate the number of secondary Covid-19 infections caused by potentially infectious students returning from university to private homes with other occupants. Using a Monte-Carlo method and data derived from UK sources, we predict that an infectious student would, on average, infect 0.94 other household members. Or, as a rule of thumb, each infected student would generate (just less than) one secondary within-household infection. The total number of secondary cases for all returning students is dependent on the virus prevalence within the student population at the time of their departure from campus back home. Correspondingly, we provide results for prevalence ranging from 0.5% to 15%, which is based on observed minimum and maximum estimates from Cardiff University's asymptomatic testing service. Although the proposed estimation method is general and robust, the results are sensitive to the input data. We therefore provide Matlab code and a helpful online app (http://bit.ly/Secondary_infections_app) that can be used to estimate numbers of secondary infections based on local parameter values\",\"PeriodicalId\":44699,\"journal\":{\"name\":\"Health Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.11.11.20229559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.11.11.20229559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
Secondary Household Covid-19 Transmission Modelling of Students Returning Home from University
We estimate the number of secondary Covid-19 infections caused by potentially infectious students returning from university to private homes with other occupants. Using a Monte-Carlo method and data derived from UK sources, we predict that an infectious student would, on average, infect 0.94 other household members. Or, as a rule of thumb, each infected student would generate (just less than) one secondary within-household infection. The total number of secondary cases for all returning students is dependent on the virus prevalence within the student population at the time of their departure from campus back home. Correspondingly, we provide results for prevalence ranging from 0.5% to 15%, which is based on observed minimum and maximum estimates from Cardiff University's asymptomatic testing service. Although the proposed estimation method is general and robust, the results are sensitive to the input data. We therefore provide Matlab code and a helpful online app (http://bit.ly/Secondary_infections_app) that can be used to estimate numbers of secondary infections based on local parameter values