Guojun Chu, Jingyu Wang, Q. Qi, Haifeng Sun, Shimin Tao, Hao Yang, J. Liao, Zhu Han
{"title":"利用时空行为模式进行电信网络欺诈检测","authors":"Guojun Chu, Jingyu Wang, Q. Qi, Haifeng Sun, Shimin Tao, Hao Yang, J. Liao, Zhu Han","doi":"10.1109/tdsc.2022.3228797","DOIUrl":null,"url":null,"abstract":"Fraud detection in telecom network is a crucial problem that threatens users’ privacy and property security. In recent years, fraudsters adopt more advanced camouflage strategies to avoid being detected by traditional algorithms. To deal with these new types of fraud, it is necessary to analyze the integrated spatial-temporal features, which are rarely involved in existing literature. In this article, we propose a novel fraud detection model based on the intertwined spatial-temporal patterns of user behaviors. Specifically, we first introduce the extension of statistical and interactive features to dynamic call patterns, and build a probabilistic model to simulate users’ call behaviors. Then the sequential patterns reflecting users’ own behaviors are obtained by the mixture Hidden Markov Models, and the structural patterns reflecting the collaboration between users in the telecom network are obtained by the attention-based Graph-SAGE model. Finally, our model outputs a fraud score for each user to detect potential fraudsters. We conduct extensive experiments on a real-world telecom dataset. The experimental results demonstrate that our intertwined spatial-temporal call patterns can effectively represent user behavior and improve the accuracy of fraud detection compared with state-of-the-art methods. The results also validate the efficiency and the interpretability of our model.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"1 1","pages":"4564-4577"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploiting Spatial-Temporal Behavior Patterns for Fraud Detection in Telecom Networks\",\"authors\":\"Guojun Chu, Jingyu Wang, Q. Qi, Haifeng Sun, Shimin Tao, Hao Yang, J. Liao, Zhu Han\",\"doi\":\"10.1109/tdsc.2022.3228797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fraud detection in telecom network is a crucial problem that threatens users’ privacy and property security. In recent years, fraudsters adopt more advanced camouflage strategies to avoid being detected by traditional algorithms. To deal with these new types of fraud, it is necessary to analyze the integrated spatial-temporal features, which are rarely involved in existing literature. In this article, we propose a novel fraud detection model based on the intertwined spatial-temporal patterns of user behaviors. Specifically, we first introduce the extension of statistical and interactive features to dynamic call patterns, and build a probabilistic model to simulate users’ call behaviors. Then the sequential patterns reflecting users’ own behaviors are obtained by the mixture Hidden Markov Models, and the structural patterns reflecting the collaboration between users in the telecom network are obtained by the attention-based Graph-SAGE model. Finally, our model outputs a fraud score for each user to detect potential fraudsters. We conduct extensive experiments on a real-world telecom dataset. The experimental results demonstrate that our intertwined spatial-temporal call patterns can effectively represent user behavior and improve the accuracy of fraud detection compared with state-of-the-art methods. The results also validate the efficiency and the interpretability of our model.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"1 1\",\"pages\":\"4564-4577\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tdsc.2022.3228797\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2022.3228797","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Exploiting Spatial-Temporal Behavior Patterns for Fraud Detection in Telecom Networks
Fraud detection in telecom network is a crucial problem that threatens users’ privacy and property security. In recent years, fraudsters adopt more advanced camouflage strategies to avoid being detected by traditional algorithms. To deal with these new types of fraud, it is necessary to analyze the integrated spatial-temporal features, which are rarely involved in existing literature. In this article, we propose a novel fraud detection model based on the intertwined spatial-temporal patterns of user behaviors. Specifically, we first introduce the extension of statistical and interactive features to dynamic call patterns, and build a probabilistic model to simulate users’ call behaviors. Then the sequential patterns reflecting users’ own behaviors are obtained by the mixture Hidden Markov Models, and the structural patterns reflecting the collaboration between users in the telecom network are obtained by the attention-based Graph-SAGE model. Finally, our model outputs a fraud score for each user to detect potential fraudsters. We conduct extensive experiments on a real-world telecom dataset. The experimental results demonstrate that our intertwined spatial-temporal call patterns can effectively represent user behavior and improve the accuracy of fraud detection compared with state-of-the-art methods. The results also validate the efficiency and the interpretability of our model.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.