基于机器学习的地址随机化网络防御弹性测试

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Dependable and Secure Computing Pub Date : 2023-11-01 DOI:10.1109/tdsc.2023.3234561
G. Mani, Marina Haliem, Bharat K. Bhargava, Indu Manickam, Kevin Kochpatcharin, Myeongsu Kim, E. Vugrin, Weichao Wang, Chris Jenkins, Pelin Angin, Meng Yu
{"title":"基于机器学习的地址随机化网络防御弹性测试","authors":"G. Mani, Marina Haliem, Bharat K. Bhargava, Indu Manickam, Kevin Kochpatcharin, Myeongsu Kim, E. Vugrin, Weichao Wang, Chris Jenkins, Pelin Angin, Meng Yu","doi":"10.1109/tdsc.2023.3234561","DOIUrl":null,"url":null,"abstract":"Moving target defenses (MTDs) are widely used as an active defense strategy for thwarting cyberattacks on cyber-physical systems by increasing diversity of software and network paths. Recently, machine Learning (ML) and deep Learning (DL) models have been demonstrated to defeat some of the cyber defenses by learning attack detection patterns and defense strategies. It raises concerns about the susceptibility of MTD to ML and DL methods. In this article, we analyze the effectiveness of ML and DL models when it comes to deciphering MTD methods and ultimately evade MTD-based protections in real-time systems. Specifically, we consider a MTD algorithm that periodically randomizes address assignments within the MIL-STD-1553 protocol—a military standard serial data bus. Two ML and DL-based tasks are performed on MIL-STD-1553 protocol to measure the effectiveness of the learning models in deciphering the MTD algorithm: 1) determining whether there is an address assignments change i.e., whether the given system employs a MTD protocol and if it does 2) predicting the future address assignments. The supervised learning models (random forest and k-nearest neighbors) effectively detected the address assignment changes and classified whether the given system is equipped with a specified MTD protocol. On the other hand, the unsupervised learning model (K-means) was significantly less effective. The DL model (long short-term memory) was able to predict the future addresses with varied effectiveness based on MTD algorithm's settings.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Based Resilience Testing of an Address Randomization Cyber Defense\",\"authors\":\"G. Mani, Marina Haliem, Bharat K. Bhargava, Indu Manickam, Kevin Kochpatcharin, Myeongsu Kim, E. Vugrin, Weichao Wang, Chris Jenkins, Pelin Angin, Meng Yu\",\"doi\":\"10.1109/tdsc.2023.3234561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moving target defenses (MTDs) are widely used as an active defense strategy for thwarting cyberattacks on cyber-physical systems by increasing diversity of software and network paths. Recently, machine Learning (ML) and deep Learning (DL) models have been demonstrated to defeat some of the cyber defenses by learning attack detection patterns and defense strategies. It raises concerns about the susceptibility of MTD to ML and DL methods. In this article, we analyze the effectiveness of ML and DL models when it comes to deciphering MTD methods and ultimately evade MTD-based protections in real-time systems. Specifically, we consider a MTD algorithm that periodically randomizes address assignments within the MIL-STD-1553 protocol—a military standard serial data bus. Two ML and DL-based tasks are performed on MIL-STD-1553 protocol to measure the effectiveness of the learning models in deciphering the MTD algorithm: 1) determining whether there is an address assignments change i.e., whether the given system employs a MTD protocol and if it does 2) predicting the future address assignments. The supervised learning models (random forest and k-nearest neighbors) effectively detected the address assignment changes and classified whether the given system is equipped with a specified MTD protocol. On the other hand, the unsupervised learning model (K-means) was significantly less effective. The DL model (long short-term memory) was able to predict the future addresses with varied effectiveness based on MTD algorithm's settings.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tdsc.2023.3234561\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2023.3234561","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Based Resilience Testing of an Address Randomization Cyber Defense
Moving target defenses (MTDs) are widely used as an active defense strategy for thwarting cyberattacks on cyber-physical systems by increasing diversity of software and network paths. Recently, machine Learning (ML) and deep Learning (DL) models have been demonstrated to defeat some of the cyber defenses by learning attack detection patterns and defense strategies. It raises concerns about the susceptibility of MTD to ML and DL methods. In this article, we analyze the effectiveness of ML and DL models when it comes to deciphering MTD methods and ultimately evade MTD-based protections in real-time systems. Specifically, we consider a MTD algorithm that periodically randomizes address assignments within the MIL-STD-1553 protocol—a military standard serial data bus. Two ML and DL-based tasks are performed on MIL-STD-1553 protocol to measure the effectiveness of the learning models in deciphering the MTD algorithm: 1) determining whether there is an address assignments change i.e., whether the given system employs a MTD protocol and if it does 2) predicting the future address assignments. The supervised learning models (random forest and k-nearest neighbors) effectively detected the address assignment changes and classified whether the given system is equipped with a specified MTD protocol. On the other hand, the unsupervised learning model (K-means) was significantly less effective. The DL model (long short-term memory) was able to predict the future addresses with varied effectiveness based on MTD algorithm's settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
期刊最新文献
DSChain: A Blockchain System for Complete Lifecycle Security of Data in Internet of Things Privacy-Preserving and Energy-Saving Random Forest-Based Disease Detection Framework for Green Internet of Things in Mobile Healthcare Networks IvyRedaction: Enabling Atomic, Consistent and Accountable Cross-Chain Rewriting Multi-Adjustable Join Schemes With Adaptive Indistinguishably Security User Authentication on Earable Devices via Bone-Conducted Occlusion Sounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1