YOLOv5、Transformer和efficient探测器在沙漠麦田圈探测中的对比研究

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-06-14 DOI:10.1109/LGRS.2021.3085139
M. L. Mekhalfi, Carlo Nicolò, Y. Bazi, Mohamad Mahmoud Al Rahhal, Norah A. Alsharif, E. Maghayreh
{"title":"YOLOv5、Transformer和efficient探测器在沙漠麦田圈探测中的对比研究","authors":"M. L. Mekhalfi, Carlo Nicolò, Y. Bazi, Mohamad Mahmoud Al Rahhal, Norah A. Alsharif, E. Maghayreh","doi":"10.1109/LGRS.2021.3085139","DOIUrl":null,"url":null,"abstract":"Ongoing discoveries of water reserves have fostered an increasing adoption of crop circles in the desert in several countries. Automatically quantifying and surveying the layout of crop circles in remote areas can be of great use for stakeholders in managing the expansion of the farming land. This letter compares latest deep learning models for crop circle detection and counting, namely Detection Transformers, EfficientDet and YOLOv5 are evaluated. To this end, we build two datasets, via Google Earth Pro, corresponding to two large crop circle hot spots in Egypt and Saudi Arabia. The images were drawn at an altitude of 20 km above the targets. The models are assessed in within-domain and cross-domain scenarios, and yielded plausible detection potential and inference response.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"19 1","pages":"1-5"},"PeriodicalIF":4.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2021.3085139","citationCount":"42","resultStr":"{\"title\":\"Contrasting YOLOv5, Transformer, and EfficientDet Detectors for Crop Circle Detection in Desert\",\"authors\":\"M. L. Mekhalfi, Carlo Nicolò, Y. Bazi, Mohamad Mahmoud Al Rahhal, Norah A. Alsharif, E. Maghayreh\",\"doi\":\"10.1109/LGRS.2021.3085139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ongoing discoveries of water reserves have fostered an increasing adoption of crop circles in the desert in several countries. Automatically quantifying and surveying the layout of crop circles in remote areas can be of great use for stakeholders in managing the expansion of the farming land. This letter compares latest deep learning models for crop circle detection and counting, namely Detection Transformers, EfficientDet and YOLOv5 are evaluated. To this end, we build two datasets, via Google Earth Pro, corresponding to two large crop circle hot spots in Egypt and Saudi Arabia. The images were drawn at an altitude of 20 km above the targets. The models are assessed in within-domain and cross-domain scenarios, and yielded plausible detection potential and inference response.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"19 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LGRS.2021.3085139\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LGRS.2021.3085139\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2021.3085139","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 42

摘要

在一些国家,不断发现的水储备促进了在沙漠中越来越多地采用麦田怪圈。自动量化和测量偏远地区的麦田圈布局可以为利益相关者在管理耕地扩张方面提供很大的帮助。这封信比较了最新的用于麦田圈检测和计数的深度学习模型,即detection transformer, EfficientDet和YOLOv5。为此,我们通过谷歌Earth Pro建立了两个数据集,对应于埃及和沙特阿拉伯的两个大麦田圈热点。这些图像是在目标上空20公里处绘制的。该模型在域内和跨域场景下进行了评估,并产生了合理的检测潜力和推理响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contrasting YOLOv5, Transformer, and EfficientDet Detectors for Crop Circle Detection in Desert
Ongoing discoveries of water reserves have fostered an increasing adoption of crop circles in the desert in several countries. Automatically quantifying and surveying the layout of crop circles in remote areas can be of great use for stakeholders in managing the expansion of the farming land. This letter compares latest deep learning models for crop circle detection and counting, namely Detection Transformers, EfficientDet and YOLOv5 are evaluated. To this end, we build two datasets, via Google Earth Pro, corresponding to two large crop circle hot spots in Egypt and Saudi Arabia. The images were drawn at an altitude of 20 km above the targets. The models are assessed in within-domain and cross-domain scenarios, and yielded plausible detection potential and inference response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
A “Difference In Difference” based method for unsupervised change detection in season-varying images AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed Monitoring ten insect pests in selected orchards in three Azorean Islands: The project CUARENTAGRI. Maritime Radar Target Detection in Sea Clutter Based on CNN With Dual-Perspective Attention A Semantics-Geometry Framework for Road Extraction From Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1