基于双加权伪标签损失的图域对抗网络用于高光谱图像分类

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2022-01-01 DOI:10.1109/lgrs.2021.3135310
Yi Kong, Xuesong Wang, Yuhu Cheng, Yangchi Chen, C. L. P. Chen
{"title":"基于双加权伪标签损失的图域对抗网络用于高光谱图像分类","authors":"Yi Kong, Xuesong Wang, Yuhu Cheng, Yangchi Chen, C. L. P. Chen","doi":"10.1109/lgrs.2021.3135310","DOIUrl":null,"url":null,"abstract":"A hyperspectral image (HSI) classification method named graph domain adversarial network with dual-weighted pseudo-label loss (GDAN-DWPL) is proposed in this letter. First, in order to extract more discriminative features, GDAN is applied to the transfer task of HSI. Then, a more reliable spectral–spatial graph is constructed by comprehensively utilizing the abundant spectral features and spatial contextual information. Finally, due to the misalignment of probability distribution on class-level caused by inaccurate pseudo-labels of target domain, a dual-weighted pseudo-label loss is proposed from the perspective of spatiality and confidence. By assigning larger weights to more reliable pixels and eliminating pixels with false pseudo-labels, the negative impact on learning process of prediction model can be reduced. Experimental results on four real HSI datasets show the superiority of GDAN-DWPL.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"19 1","pages":"1-5"},"PeriodicalIF":4.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Graph Domain Adversarial Network With Dual-Weighted Pseudo-Label Loss for Hyperspectral Image Classification\",\"authors\":\"Yi Kong, Xuesong Wang, Yuhu Cheng, Yangchi Chen, C. L. P. Chen\",\"doi\":\"10.1109/lgrs.2021.3135310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hyperspectral image (HSI) classification method named graph domain adversarial network with dual-weighted pseudo-label loss (GDAN-DWPL) is proposed in this letter. First, in order to extract more discriminative features, GDAN is applied to the transfer task of HSI. Then, a more reliable spectral–spatial graph is constructed by comprehensively utilizing the abundant spectral features and spatial contextual information. Finally, due to the misalignment of probability distribution on class-level caused by inaccurate pseudo-labels of target domain, a dual-weighted pseudo-label loss is proposed from the perspective of spatiality and confidence. By assigning larger weights to more reliable pixels and eliminating pixels with false pseudo-labels, the negative impact on learning process of prediction model can be reduced. Experimental results on four real HSI datasets show the superiority of GDAN-DWPL.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"19 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/lgrs.2021.3135310\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2021.3135310","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于双加权伪标签损失的图域对抗网络(GDAN-DWPL)的高光谱图像分类方法。首先,为了提取更多的判别特征,将GDAN应用于恒生指数的传递任务。然后,综合利用丰富的光谱特征和空间背景信息,构建更可靠的光谱-空间图。最后,针对目标域伪标签不准确导致类水平概率分布不一致的问题,从空间性和置信度的角度提出了双加权伪标签损失算法。通过对更可靠的像素分配更大的权重,并消除带有虚假伪标签的像素,可以减少对预测模型学习过程的负面影响。在4个真实HSI数据集上的实验结果表明了GDAN-DWPL的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph Domain Adversarial Network With Dual-Weighted Pseudo-Label Loss for Hyperspectral Image Classification
A hyperspectral image (HSI) classification method named graph domain adversarial network with dual-weighted pseudo-label loss (GDAN-DWPL) is proposed in this letter. First, in order to extract more discriminative features, GDAN is applied to the transfer task of HSI. Then, a more reliable spectral–spatial graph is constructed by comprehensively utilizing the abundant spectral features and spatial contextual information. Finally, due to the misalignment of probability distribution on class-level caused by inaccurate pseudo-labels of target domain, a dual-weighted pseudo-label loss is proposed from the perspective of spatiality and confidence. By assigning larger weights to more reliable pixels and eliminating pixels with false pseudo-labels, the negative impact on learning process of prediction model can be reduced. Experimental results on four real HSI datasets show the superiority of GDAN-DWPL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
A “Difference In Difference” based method for unsupervised change detection in season-varying images AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed Monitoring ten insect pests in selected orchards in three Azorean Islands: The project CUARENTAGRI. Maritime Radar Target Detection in Sea Clutter Based on CNN With Dual-Perspective Attention A Semantics-Geometry Framework for Road Extraction From Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1