分布移位少镜头场景分类的元自监督学习

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2022-01-01 DOI:10.1109/lgrs.2022.3174277
Tengfei Gong, Xiangtao Zheng, Xiaoqiang Lu
{"title":"分布移位少镜头场景分类的元自监督学习","authors":"Tengfei Gong, Xiangtao Zheng, Xiaoqiang Lu","doi":"10.1109/lgrs.2022.3174277","DOIUrl":null,"url":null,"abstract":"Few-shot classification tries to recognize novel remote sensing image categories with a few shot samples. However, current methods assume that the test dataset shares the same domain with the labeled training dataset where prior knowledge is learned. It is infeasible to collect a training dataset for each domain, since remote sensing images may come from various domains. Exploiting the existing labeled dataset from another domain (source domain) to help the target dataset (target domain) classification would be efficient. In this letter, both meta-learning and self-supervised learning are jointly conducted for few-shot classification. Specifically, meta-learning is executed over a pretrained network for few-shot classification. Furthermore, self-supervised learning is exploited to fit the target domain distribution by training on unlabeled target domain images. Experiments are conducted on NWPU, EuroSAT and Merced datasets to validate the effectiveness.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"19 1","pages":"1-5"},"PeriodicalIF":4.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Meta Self-Supervised Learning for Distribution Shifted Few-Shot Scene Classification\",\"authors\":\"Tengfei Gong, Xiangtao Zheng, Xiaoqiang Lu\",\"doi\":\"10.1109/lgrs.2022.3174277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few-shot classification tries to recognize novel remote sensing image categories with a few shot samples. However, current methods assume that the test dataset shares the same domain with the labeled training dataset where prior knowledge is learned. It is infeasible to collect a training dataset for each domain, since remote sensing images may come from various domains. Exploiting the existing labeled dataset from another domain (source domain) to help the target dataset (target domain) classification would be efficient. In this letter, both meta-learning and self-supervised learning are jointly conducted for few-shot classification. Specifically, meta-learning is executed over a pretrained network for few-shot classification. Furthermore, self-supervised learning is exploited to fit the target domain distribution by training on unlabeled target domain images. Experiments are conducted on NWPU, EuroSAT and Merced datasets to validate the effectiveness.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"19 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/lgrs.2022.3174277\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2022.3174277","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

摘要

少照分类是利用少量的遥感影像样本来识别新的遥感影像类别。然而,目前的方法假设测试数据集与学习先验知识的标记训练数据集共享相同的域。由于遥感图像可能来自不同的领域,因此不可能为每个领域收集一个训练数据集。利用其他领域(源领域)的已有标记数据集来帮助目标数据集(目标领域)分类将是有效的。在这封信中,我们将元学习和自监督学习结合起来进行few-shot分类。具体来说,元学习是在预训练的网络上执行的,用于少量分类。此外,通过对未标记的目标域图像进行训练,利用自监督学习拟合目标域分布。在NWPU、EuroSAT和Merced数据集上进行了实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meta Self-Supervised Learning for Distribution Shifted Few-Shot Scene Classification
Few-shot classification tries to recognize novel remote sensing image categories with a few shot samples. However, current methods assume that the test dataset shares the same domain with the labeled training dataset where prior knowledge is learned. It is infeasible to collect a training dataset for each domain, since remote sensing images may come from various domains. Exploiting the existing labeled dataset from another domain (source domain) to help the target dataset (target domain) classification would be efficient. In this letter, both meta-learning and self-supervised learning are jointly conducted for few-shot classification. Specifically, meta-learning is executed over a pretrained network for few-shot classification. Furthermore, self-supervised learning is exploited to fit the target domain distribution by training on unlabeled target domain images. Experiments are conducted on NWPU, EuroSAT and Merced datasets to validate the effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
A “Difference In Difference” based method for unsupervised change detection in season-varying images AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed Monitoring ten insect pests in selected orchards in three Azorean Islands: The project CUARENTAGRI. Maritime Radar Target Detection in Sea Clutter Based on CNN With Dual-Perspective Attention A Semantics-Geometry Framework for Road Extraction From Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1