一种新的基于变量正则化QR分解的递归最小m估计算法——性能分析及声学应用

S. Chan, Y. Chu, Z. G. Zhang, K. Tsui
{"title":"一种新的基于变量正则化QR分解的递归最小m估计算法——性能分析及声学应用","authors":"S. Chan, Y. Chu, Z. G. Zhang, K. Tsui","doi":"10.1109/TASL.2012.2236315","DOIUrl":null,"url":null,"abstract":"This paper proposes a new variable regularized QR decompPosition (QRD)-based recursive least M-estimate (VR-QRRLM) adaptive filter and studies its convergence performance and acoustic applications. Firstly, variable L2 regularization is introduced to an efficient QRD-based implementation of the conventional RLM algorithm to reduce its variance and improve the numerical stability. Difference equations describing the convergence behavior of this algorithm in Gaussian inputs and additive contaminated Gaussian noises are derived, from which new expressions for the steady-state excess mean square error (EMSE) are obtained. They suggest that regularization can help to reduce the variance, especially when the input covariance matrix is ill-conditioned due to lacking of excitation, with slightly increased bias. Moreover, the advantage of the M-estimation algorithm over its least squares counterpart is analytically quantified. For white Gaussian inputs, a new formula for selecting the regularization parameter is derived from the MSE analysis, which leads to the proposed VR-QRRLM algorithm. Its application to acoustic path identification and active noise control (ANC) problems is then studied where a new filtered-x (FX) VR-QRRLM ANC algorithm is derived. Moreover, the performance of this new ANC algorithm under impulsive noises and regularization can be characterized by the proposed theoretical analysis. Simulation results show that the VR-QRRLM-based algorithms considerably outperform the traditional algorithms when the input signal level is low or in the presence of impulsive noises and the theoretical predictions are in good agreement with simulation results.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2012.2236315","citationCount":"13","resultStr":"{\"title\":\"A New Variable Regularized QR Decomposition-Based Recursive Least M-Estimate Algorithm—Performance Analysis and Acoustic Applications\",\"authors\":\"S. Chan, Y. Chu, Z. G. Zhang, K. Tsui\",\"doi\":\"10.1109/TASL.2012.2236315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new variable regularized QR decompPosition (QRD)-based recursive least M-estimate (VR-QRRLM) adaptive filter and studies its convergence performance and acoustic applications. Firstly, variable L2 regularization is introduced to an efficient QRD-based implementation of the conventional RLM algorithm to reduce its variance and improve the numerical stability. Difference equations describing the convergence behavior of this algorithm in Gaussian inputs and additive contaminated Gaussian noises are derived, from which new expressions for the steady-state excess mean square error (EMSE) are obtained. They suggest that regularization can help to reduce the variance, especially when the input covariance matrix is ill-conditioned due to lacking of excitation, with slightly increased bias. Moreover, the advantage of the M-estimation algorithm over its least squares counterpart is analytically quantified. For white Gaussian inputs, a new formula for selecting the regularization parameter is derived from the MSE analysis, which leads to the proposed VR-QRRLM algorithm. Its application to acoustic path identification and active noise control (ANC) problems is then studied where a new filtered-x (FX) VR-QRRLM ANC algorithm is derived. Moreover, the performance of this new ANC algorithm under impulsive noises and regularization can be characterized by the proposed theoretical analysis. Simulation results show that the VR-QRRLM-based algorithms considerably outperform the traditional algorithms when the input signal level is low or in the presence of impulsive noises and the theoretical predictions are in good agreement with simulation results.\",\"PeriodicalId\":55014,\"journal\":{\"name\":\"IEEE Transactions on Audio Speech and Language Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TASL.2012.2236315\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Audio Speech and Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASL.2012.2236315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2012.2236315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种新的基于变量正则化QR分解(QRD)的递归最小m估计(VR-QRRLM)自适应滤波器,并研究了其收敛性能和声学应用。首先,将变量L2正则化引入到基于qrd的传统RLM算法的有效实现中,以减小其方差并提高数值稳定性。导出了描述该算法在高斯输入和加性高斯噪声下收敛性的差分方程,由此得到了稳态超额均方误差(EMSE)的新表达式。他们认为,正则化可以帮助减少方差,特别是当输入协方差矩阵由于缺乏激励而病态时,偏差略有增加。此外,m估计算法相对于最小二乘算法的优势是分析量化的。对于白高斯输入,通过MSE分析,导出了正则化参数的选择公式,并由此提出了VR-QRRLM算法。然后研究了其在声路识别和主动噪声控制(ANC)问题中的应用,并推导了一种新的滤波-x (FX) VR-QRRLM ANC算法。此外,该算法在脉冲噪声和正则化条件下的性能可以通过理论分析来表征。仿真结果表明,当输入信号电平较低或存在脉冲噪声时,基于vr - qrrlm的算法明显优于传统算法,理论预测与仿真结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Variable Regularized QR Decomposition-Based Recursive Least M-Estimate Algorithm—Performance Analysis and Acoustic Applications
This paper proposes a new variable regularized QR decompPosition (QRD)-based recursive least M-estimate (VR-QRRLM) adaptive filter and studies its convergence performance and acoustic applications. Firstly, variable L2 regularization is introduced to an efficient QRD-based implementation of the conventional RLM algorithm to reduce its variance and improve the numerical stability. Difference equations describing the convergence behavior of this algorithm in Gaussian inputs and additive contaminated Gaussian noises are derived, from which new expressions for the steady-state excess mean square error (EMSE) are obtained. They suggest that regularization can help to reduce the variance, especially when the input covariance matrix is ill-conditioned due to lacking of excitation, with slightly increased bias. Moreover, the advantage of the M-estimation algorithm over its least squares counterpart is analytically quantified. For white Gaussian inputs, a new formula for selecting the regularization parameter is derived from the MSE analysis, which leads to the proposed VR-QRRLM algorithm. Its application to acoustic path identification and active noise control (ANC) problems is then studied where a new filtered-x (FX) VR-QRRLM ANC algorithm is derived. Moreover, the performance of this new ANC algorithm under impulsive noises and regularization can be characterized by the proposed theoretical analysis. Simulation results show that the VR-QRRLM-based algorithms considerably outperform the traditional algorithms when the input signal level is low or in the presence of impulsive noises and the theoretical predictions are in good agreement with simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1