复值数据非负矩阵分解的多通道扩展

H. Sawada, H. Kameoka, S. Araki, N. Ueda
{"title":"复值数据非负矩阵分解的多通道扩展","authors":"H. Sawada, H. Kameoka, S. Araki, N. Ueda","doi":"10.1109/TASL.2013.2239990","DOIUrl":null,"url":null,"abstract":"This paper presents new formulations and algorithms for multichannel extensions of non-negative matrix factorization (NMF). The formulations employ Hermitian positive semidefinite matrices to represent a multichannel version of non-negative elements. Multichannel Euclidean distance and multichannel Itakura-Saito (IS) divergence are defined based on appropriate statistical models utilizing multivariate complex Gaussian distributions. To minimize this distance/divergence, efficient optimization algorithms in the form of multiplicative updates are derived by using properly designed auxiliary functions. Two methods are proposed for clustering NMF bases according to the estimated spatial property. Convolutive blind source separation (BSS) is performed by the multichannel extensions of NMF with the clustering mechanism. Experimental results show that 1) the derived multiplicative update rules exhibited good convergence behavior, and 2) BSS tasks for several music sources with two microphones and three instrumental parts were evaluated successfully.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2239990","citationCount":"259","resultStr":"{\"title\":\"Multichannel Extensions of Non-Negative Matrix Factorization With Complex-Valued Data\",\"authors\":\"H. Sawada, H. Kameoka, S. Araki, N. Ueda\",\"doi\":\"10.1109/TASL.2013.2239990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents new formulations and algorithms for multichannel extensions of non-negative matrix factorization (NMF). The formulations employ Hermitian positive semidefinite matrices to represent a multichannel version of non-negative elements. Multichannel Euclidean distance and multichannel Itakura-Saito (IS) divergence are defined based on appropriate statistical models utilizing multivariate complex Gaussian distributions. To minimize this distance/divergence, efficient optimization algorithms in the form of multiplicative updates are derived by using properly designed auxiliary functions. Two methods are proposed for clustering NMF bases according to the estimated spatial property. Convolutive blind source separation (BSS) is performed by the multichannel extensions of NMF with the clustering mechanism. Experimental results show that 1) the derived multiplicative update rules exhibited good convergence behavior, and 2) BSS tasks for several music sources with two microphones and three instrumental parts were evaluated successfully.\",\"PeriodicalId\":55014,\"journal\":{\"name\":\"IEEE Transactions on Audio Speech and Language Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TASL.2013.2239990\",\"citationCount\":\"259\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Audio Speech and Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASL.2013.2239990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2239990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 259

摘要

本文提出了非负矩阵分解(NMF)多通道扩展的新公式和新算法。该公式采用厄米正半定矩阵来表示非负元素的多通道版本。多通道欧几里得距离和多通道Itakura-Saito (IS)散度是基于适当的统计模型,利用多元复高斯分布定义的。为了最小化这种距离/散度,通过使用适当设计的辅助函数,以乘法更新的形式推导出有效的优化算法。根据估计的空间特性,提出了两种NMF基聚类方法。卷积盲源分离(BSS)是利用NMF的多通道扩展和聚类机制实现的。实验结果表明:(1)推导的乘法更新规则具有良好的收敛性;(2)成功地评估了具有两个传声器和三个乐器部件的多个音乐源的BSS任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multichannel Extensions of Non-Negative Matrix Factorization With Complex-Valued Data
This paper presents new formulations and algorithms for multichannel extensions of non-negative matrix factorization (NMF). The formulations employ Hermitian positive semidefinite matrices to represent a multichannel version of non-negative elements. Multichannel Euclidean distance and multichannel Itakura-Saito (IS) divergence are defined based on appropriate statistical models utilizing multivariate complex Gaussian distributions. To minimize this distance/divergence, efficient optimization algorithms in the form of multiplicative updates are derived by using properly designed auxiliary functions. Two methods are proposed for clustering NMF bases according to the estimated spatial property. Convolutive blind source separation (BSS) is performed by the multichannel extensions of NMF with the clustering mechanism. Experimental results show that 1) the derived multiplicative update rules exhibited good convergence behavior, and 2) BSS tasks for several music sources with two microphones and three instrumental parts were evaluated successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1