等离子体合成纳米硅:从分子到团簇和纳米颗粒生长

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY IEEE Open Journal of Nanotechnology Pub Date : 2022-09-28 DOI:10.1109/OJNANO.2022.3209995
Shota Nunomura;Kunihiro Kamataki;Takehiko Nagai;Tatsuya Misawa;Shinji Kawai;Kosuke Takenaka;Giichiro Uchida;Kazunori Koga
{"title":"等离子体合成纳米硅:从分子到团簇和纳米颗粒生长","authors":"Shota Nunomura;Kunihiro Kamataki;Takehiko Nagai;Tatsuya Misawa;Shinji Kawai;Kosuke Takenaka;Giichiro Uchida;Kazunori Koga","doi":"10.1109/OJNANO.2022.3209995","DOIUrl":null,"url":null,"abstract":"Plasma nanotechnology is widely used for nanoscale etching, dopant implantation and thin-film deposition for state-of-the-art semiconductor devices. Such a plasma nanotechnology has another interesting aspect of synthesizing nanoparticles, in a controlled manner of atomic composition, structure and those size. Here, we present the polymerization and growth of silicon nanoparticles from a molecular level to 10 nm-particles in hydrogen diluted silane plasmas. The polymerization and growth are experimentally studied using various plasma diagnostic tools. The results indicate that nanoparticles are rapidly formed via gas-phase reactions in a low-density plasma comprising high-energy electrons. The growth kinetics and the modification of plasma properties are discussed in terms of gas-phase reactions, charging and coagulation of nanoparticles.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"94-100"},"PeriodicalIF":1.8000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9904822","citationCount":"1","resultStr":"{\"title\":\"Plasma Synthesis of Silicon Nanoparticles: From Molecules to Clusters and Nanoparticle Growth\",\"authors\":\"Shota Nunomura;Kunihiro Kamataki;Takehiko Nagai;Tatsuya Misawa;Shinji Kawai;Kosuke Takenaka;Giichiro Uchida;Kazunori Koga\",\"doi\":\"10.1109/OJNANO.2022.3209995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasma nanotechnology is widely used for nanoscale etching, dopant implantation and thin-film deposition for state-of-the-art semiconductor devices. Such a plasma nanotechnology has another interesting aspect of synthesizing nanoparticles, in a controlled manner of atomic composition, structure and those size. Here, we present the polymerization and growth of silicon nanoparticles from a molecular level to 10 nm-particles in hydrogen diluted silane plasmas. The polymerization and growth are experimentally studied using various plasma diagnostic tools. The results indicate that nanoparticles are rapidly formed via gas-phase reactions in a low-density plasma comprising high-energy electrons. The growth kinetics and the modification of plasma properties are discussed in terms of gas-phase reactions, charging and coagulation of nanoparticles.\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":\"3 \",\"pages\":\"94-100\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9904822\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9904822/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9904822/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

等离子体纳米技术广泛应用于纳米级蚀刻、掺杂注入和薄膜沉积等领域。这种等离子体纳米技术在原子组成、结构和尺寸可控的情况下合成纳米粒子还有另一个有趣的方面。在这里,我们展示了硅纳米粒子在氢稀释的硅烷等离子体中从分子水平到10纳米粒子的聚合和生长。用各种血浆诊断工具对其聚合和生长进行了实验研究。结果表明,纳米颗粒在含有高能电子的低密度等离子体中通过气相反应快速形成。从气相反应、纳米粒子的充电和凝聚等方面讨论了纳米粒子的生长动力学和等离子体性质的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasma Synthesis of Silicon Nanoparticles: From Molecules to Clusters and Nanoparticle Growth
Plasma nanotechnology is widely used for nanoscale etching, dopant implantation and thin-film deposition for state-of-the-art semiconductor devices. Such a plasma nanotechnology has another interesting aspect of synthesizing nanoparticles, in a controlled manner of atomic composition, structure and those size. Here, we present the polymerization and growth of silicon nanoparticles from a molecular level to 10 nm-particles in hydrogen diluted silane plasmas. The polymerization and growth are experimentally studied using various plasma diagnostic tools. The results indicate that nanoparticles are rapidly formed via gas-phase reactions in a low-density plasma comprising high-energy electrons. The growth kinetics and the modification of plasma properties are discussed in terms of gas-phase reactions, charging and coagulation of nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
期刊最新文献
High-Performance Dielectric Modulated Epitaxial Tunnel Layer Tunnel FET for Label-Free Detection of Biomolecules Portable and Cost-Effective Handheld Ultrasound System Utilizing FPGA-Based Synthetic Aperture Imaging Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology Manipulation of 2D and 3D Magnetic Solitons Under the Influence of DMI Gradients Gallium Sulfide-Immobilized Optical Fiber-Based SPR Sensor for Detection of Brilliant Blue Food Adulteration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1