一种基于多通道mmse的语音源分离与降噪框架

M. Souden, S. Araki, K. Kinoshita, T. Nakatani, H. Sawada
{"title":"一种基于多通道mmse的语音源分离与降噪框架","authors":"M. Souden, S. Araki, K. Kinoshita, T. Nakatani, H. Sawada","doi":"10.1109/TASL.2013.2263137","DOIUrl":null,"url":null,"abstract":"We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the minimum-mean-square error (MMSE)-based solution in the context of multiple simultaneous speakers and background noise, and outline the importance of the estimation of the activities of the speakers. The latter is accurately achieved by introducing a latent variable that takes N+1 possible discrete states for a mixture of N speech signals plus additive noise. Each state characterizes the dominance of one of the N+1 signals. We determine the posterior probability of this latent variable, and show how it plays a twofold role in the MMSE-based speech enhancement. First, it allows the extraction of the second order statistics of the noise and each of the speech signals from the noisy data. These statistics are needed to formulate the multichannel Wiener-based filters (including the minimum variance distortionless response). Second, it weighs the outputs of these linear filters to shape the spectral contents of the signals' estimates following the associated target speakers' activities. We use the spatial and spectral cues contained in the multichannel recordings of the sound mixtures to compute the posterior probability of this latent variable. The spatial cue is acquired by using the normalized observation vector whose distribution is well approximated by a Gaussian-mixture-like model, while the spectral cue can be captured by using a pre-trained Gaussian mixture model for the log-spectra of speech. The parameters of the investigated models and the speakers' activities (posterior probabilities of the different states of the latent variable) are estimated via expectation maximization. Experimental results including comparisons with the well-known independent component analysis and masking are provided to demonstrate the efficiency of the proposed framework.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2263137","citationCount":"101","resultStr":"{\"title\":\"A Multichannel MMSE-Based Framework for Speech Source Separation and Noise Reduction\",\"authors\":\"M. Souden, S. Araki, K. Kinoshita, T. Nakatani, H. Sawada\",\"doi\":\"10.1109/TASL.2013.2263137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the minimum-mean-square error (MMSE)-based solution in the context of multiple simultaneous speakers and background noise, and outline the importance of the estimation of the activities of the speakers. The latter is accurately achieved by introducing a latent variable that takes N+1 possible discrete states for a mixture of N speech signals plus additive noise. Each state characterizes the dominance of one of the N+1 signals. We determine the posterior probability of this latent variable, and show how it plays a twofold role in the MMSE-based speech enhancement. First, it allows the extraction of the second order statistics of the noise and each of the speech signals from the noisy data. These statistics are needed to formulate the multichannel Wiener-based filters (including the minimum variance distortionless response). Second, it weighs the outputs of these linear filters to shape the spectral contents of the signals' estimates following the associated target speakers' activities. We use the spatial and spectral cues contained in the multichannel recordings of the sound mixtures to compute the posterior probability of this latent variable. The spatial cue is acquired by using the normalized observation vector whose distribution is well approximated by a Gaussian-mixture-like model, while the spectral cue can be captured by using a pre-trained Gaussian mixture model for the log-spectra of speech. The parameters of the investigated models and the speakers' activities (posterior probabilities of the different states of the latent variable) are estimated via expectation maximization. Experimental results including comparisons with the well-known independent component analysis and masking are provided to demonstrate the efficiency of the proposed framework.\",\"PeriodicalId\":55014,\"journal\":{\"name\":\"IEEE Transactions on Audio Speech and Language Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TASL.2013.2263137\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Audio Speech and Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASL.2013.2263137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2263137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

摘要

提出了一种新的多通道声源分离与降噪框架。在此框架中,我们首先在多个同时说话者和背景噪声的背景下制定基于最小均方误差(MMSE)的解决方案,并概述了估计说话者活动的重要性。后者是通过引入一个潜在变量来精确实现的,该变量为N个语音信号加上加性噪声的混合物取N+1个可能的离散状态。每种状态都表示N+1信号中的一个占主导地位。我们确定了该潜在变量的后验概率,并展示了它如何在基于mmse的语音增强中发挥双重作用。首先,它允许从噪声数据中提取噪声和每个语音信号的二阶统计量。这些统计数据是制定多通道维纳滤波器(包括最小方差无失真响应)所必需的。其次,它对这些线性滤波器的输出进行加权,以根据相关目标说话者的活动来形成信号估计的频谱内容。我们使用多声道混合声音记录中包含的空间和频谱线索来计算该潜在变量的后验概率。空间线索通过归一化的观测向量获得,该观测向量的分布可以很好地近似于高斯混合模型,而频谱线索可以通过预训练的高斯混合模型捕获,用于语音的对数频谱。通过期望最大化来估计所研究模型的参数和说话人的活动(潜在变量不同状态的后验概率)。实验结果包括与众所周知的独立分量分析和掩蔽的比较,以证明该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multichannel MMSE-Based Framework for Speech Source Separation and Noise Reduction
We propose a new framework for joint multichannel speech source separation and acoustic noise reduction. In this framework, we start by formulating the minimum-mean-square error (MMSE)-based solution in the context of multiple simultaneous speakers and background noise, and outline the importance of the estimation of the activities of the speakers. The latter is accurately achieved by introducing a latent variable that takes N+1 possible discrete states for a mixture of N speech signals plus additive noise. Each state characterizes the dominance of one of the N+1 signals. We determine the posterior probability of this latent variable, and show how it plays a twofold role in the MMSE-based speech enhancement. First, it allows the extraction of the second order statistics of the noise and each of the speech signals from the noisy data. These statistics are needed to formulate the multichannel Wiener-based filters (including the minimum variance distortionless response). Second, it weighs the outputs of these linear filters to shape the spectral contents of the signals' estimates following the associated target speakers' activities. We use the spatial and spectral cues contained in the multichannel recordings of the sound mixtures to compute the posterior probability of this latent variable. The spatial cue is acquired by using the normalized observation vector whose distribution is well approximated by a Gaussian-mixture-like model, while the spectral cue can be captured by using a pre-trained Gaussian mixture model for the log-spectra of speech. The parameters of the investigated models and the speakers' activities (posterior probabilities of the different states of the latent variable) are estimated via expectation maximization. Experimental results including comparisons with the well-known independent component analysis and masking are provided to demonstrate the efficiency of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1