基于滑动窗漏核仿射投影算法的非线性声回波消除

Jose Manuel Gil-Cacho, M. Signoretto, T. Waterschoot, M. Moonen, S. H. Jensen
{"title":"基于滑动窗漏核仿射投影算法的非线性声回波消除","authors":"Jose Manuel Gil-Cacho, M. Signoretto, T. Waterschoot, M. Moonen, S. H. Jensen","doi":"10.1109/TASL.2013.2260742","DOIUrl":null,"url":null,"abstract":"Acoustic echo cancellation (AEC) is used in speech communication systems where the existence of echoes degrades the speech intelligibility. Standard approaches to AEC rely on the assumption that the echo path to be identified can be modeled by a linear filter. However, some elements introduce nonlinear distortion and must be modeled as nonlinear systems. Several nonlinear models have been used with more or less success. The kernel affine projection algorithm (KAPA) has been successfully applied to many areas in signal processing but not yet to nonlinear AEC (NLAEC). The contribution of this paper is three-fold: (1) to apply KAPA to the NLAEC problem, (2) to develop a sliding-window leaky KAPA (SWL-KAPA) that is well suited for NLAEC applications, and (3) to propose a kernel function, consisting of a weighted sum of a linear and a Gaussian kernel. In our experiment set-up, the proposed SWL-KAPA for NLAEC consistently outperforms the linear APA, resulting in up to 12 dB of improvement in ERLE at a computational cost that is only 4.6 times higher. Moreover, it is shown that the SWL-KAPA outperforms, by 4-6 dB, a Volterra-based NLAEC, which itself has a much higher 413 times computational cost than the linear APA.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2260742","citationCount":"58","resultStr":"{\"title\":\"Nonlinear Acoustic Echo Cancellation Based on a Sliding-Window Leaky Kernel Affine Projection Algorithm\",\"authors\":\"Jose Manuel Gil-Cacho, M. Signoretto, T. Waterschoot, M. Moonen, S. H. Jensen\",\"doi\":\"10.1109/TASL.2013.2260742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic echo cancellation (AEC) is used in speech communication systems where the existence of echoes degrades the speech intelligibility. Standard approaches to AEC rely on the assumption that the echo path to be identified can be modeled by a linear filter. However, some elements introduce nonlinear distortion and must be modeled as nonlinear systems. Several nonlinear models have been used with more or less success. The kernel affine projection algorithm (KAPA) has been successfully applied to many areas in signal processing but not yet to nonlinear AEC (NLAEC). The contribution of this paper is three-fold: (1) to apply KAPA to the NLAEC problem, (2) to develop a sliding-window leaky KAPA (SWL-KAPA) that is well suited for NLAEC applications, and (3) to propose a kernel function, consisting of a weighted sum of a linear and a Gaussian kernel. In our experiment set-up, the proposed SWL-KAPA for NLAEC consistently outperforms the linear APA, resulting in up to 12 dB of improvement in ERLE at a computational cost that is only 4.6 times higher. Moreover, it is shown that the SWL-KAPA outperforms, by 4-6 dB, a Volterra-based NLAEC, which itself has a much higher 413 times computational cost than the linear APA.\",\"PeriodicalId\":55014,\"journal\":{\"name\":\"IEEE Transactions on Audio Speech and Language Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TASL.2013.2260742\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Audio Speech and Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASL.2013.2260742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2260742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

回声消除技术主要应用于语音通信系统中,回声的存在会降低语音的可理解性。AEC的标准方法依赖于要识别的回波路径可以通过线性滤波器建模的假设。然而,一些元件引入了非线性畸变,必须作为非线性系统建模。一些非线性模型的应用或多或少取得了成功。核仿射投影算法(KAPA)已成功地应用于信号处理的许多领域,但尚未应用于非线性AEC (NLAEC)。本文的贡献有三个方面:(1)将KAPA应用于NLAEC问题,(2)开发了一个非常适合NLAEC应用的滑动窗口泄漏KAPA (SWL-KAPA),以及(3)提出了一个由线性核和高斯核加权和组成的核函数。在我们的实验设置中,提出的用于NLAEC的SWL-KAPA始终优于线性APA,导致ERLE提高高达12 dB,而计算成本仅高出4.6倍。此外,研究表明,SWL-KAPA比基于volterra的NLAEC性能好4-6 dB,后者本身的计算成本比线性APA高413倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Acoustic Echo Cancellation Based on a Sliding-Window Leaky Kernel Affine Projection Algorithm
Acoustic echo cancellation (AEC) is used in speech communication systems where the existence of echoes degrades the speech intelligibility. Standard approaches to AEC rely on the assumption that the echo path to be identified can be modeled by a linear filter. However, some elements introduce nonlinear distortion and must be modeled as nonlinear systems. Several nonlinear models have been used with more or less success. The kernel affine projection algorithm (KAPA) has been successfully applied to many areas in signal processing but not yet to nonlinear AEC (NLAEC). The contribution of this paper is three-fold: (1) to apply KAPA to the NLAEC problem, (2) to develop a sliding-window leaky KAPA (SWL-KAPA) that is well suited for NLAEC applications, and (3) to propose a kernel function, consisting of a weighted sum of a linear and a Gaussian kernel. In our experiment set-up, the proposed SWL-KAPA for NLAEC consistently outperforms the linear APA, resulting in up to 12 dB of improvement in ERLE at a computational cost that is only 4.6 times higher. Moreover, it is shown that the SWL-KAPA outperforms, by 4-6 dB, a Volterra-based NLAEC, which itself has a much higher 413 times computational cost than the linear APA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1