利用部分已知目标源位置的半盲噪声提取

Zbyněk Koldovský, J. Málek, P. Tichavský, F. Nesta
{"title":"利用部分已知目标源位置的半盲噪声提取","authors":"Zbyněk Koldovský, J. Málek, P. Tichavský, F. Nesta","doi":"10.1109/TASL.2013.2264674","DOIUrl":null,"url":null,"abstract":"An extracted noise signal provides important information for subsequent enhancement of a target signal. When the target's position is fixed, the noise extractor could be a target-cancellation filter derived in a noise-free situation. In this paper we consider a situation when such cancellation filters are prepared for a set of several possible positions of the target in advance. The set of filters is interpreted as prior information available for the noise extraction when the target's exact position is unknown. Our novel method looks for a linear combination of the prepared filters via Independent Component Analysis. The method yields a filter that has a better cancellation performance than the individual filters or filters based on a minimum variance principle. The method is tested in a highly noisy and reverberant real-world environment with moving target source and interferers. A post-processing by Wiener filter using the noise signal extracted by the method is able to improve signal-to-noise ratio of the target by up to 8 dB.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2264674","citationCount":"31","resultStr":"{\"title\":\"Semi-Blind Noise Extraction Using Partially Known Position of the Target Source\",\"authors\":\"Zbyněk Koldovský, J. Málek, P. Tichavský, F. Nesta\",\"doi\":\"10.1109/TASL.2013.2264674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extracted noise signal provides important information for subsequent enhancement of a target signal. When the target's position is fixed, the noise extractor could be a target-cancellation filter derived in a noise-free situation. In this paper we consider a situation when such cancellation filters are prepared for a set of several possible positions of the target in advance. The set of filters is interpreted as prior information available for the noise extraction when the target's exact position is unknown. Our novel method looks for a linear combination of the prepared filters via Independent Component Analysis. The method yields a filter that has a better cancellation performance than the individual filters or filters based on a minimum variance principle. The method is tested in a highly noisy and reverberant real-world environment with moving target source and interferers. A post-processing by Wiener filter using the noise signal extracted by the method is able to improve signal-to-noise ratio of the target by up to 8 dB.\",\"PeriodicalId\":55014,\"journal\":{\"name\":\"IEEE Transactions on Audio Speech and Language Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TASL.2013.2264674\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Audio Speech and Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASL.2013.2264674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2264674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

提取的噪声信号为目标信号的后续增强提供了重要的信息。当目标位置固定时,噪声提取器可以是在无噪声情况下导出的目标抵消滤波器。在本文中,我们考虑了一种情况,即这种抵消滤波器是针对一组几个可能的目标位置预先准备的。当目标的确切位置未知时,滤波器集被解释为可用于噪声提取的先验信息。我们的新方法通过独立分量分析寻找准备好的滤波器的线性组合。该方法产生的滤波器比单个滤波器或基于最小方差原理的滤波器具有更好的抵消性能。该方法在具有运动目标源和干扰的高噪声和混响的真实环境中进行了测试。利用该方法提取的噪声信号进行维纳滤波后处理,可使目标的信噪比提高8 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-Blind Noise Extraction Using Partially Known Position of the Target Source
An extracted noise signal provides important information for subsequent enhancement of a target signal. When the target's position is fixed, the noise extractor could be a target-cancellation filter derived in a noise-free situation. In this paper we consider a situation when such cancellation filters are prepared for a set of several possible positions of the target in advance. The set of filters is interpreted as prior information available for the noise extraction when the target's exact position is unknown. Our novel method looks for a linear combination of the prepared filters via Independent Component Analysis. The method yields a filter that has a better cancellation performance than the individual filters or filters based on a minimum variance principle. The method is tested in a highly noisy and reverberant real-world environment with moving target source and interferers. A post-processing by Wiener filter using the noise signal extracted by the method is able to improve signal-to-noise ratio of the target by up to 8 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1