基于自适应全频带谐波模型的语音分析与合成

G. Degottex, Y. Stylianou
{"title":"基于自适应全频带谐波模型的语音分析与合成","authors":"G. Degottex, Y. Stylianou","doi":"10.1109/TASL.2013.2266772","DOIUrl":null,"url":null,"abstract":"Voice models often use frequency limits to split the speech spectrum into two or more voiced/unvoiced frequency bands. However, from the voice production, the amplitude spectrum of the voiced source decreases smoothly without any abrupt frequency limit. Accordingly, multiband models struggle to estimate these limits and, as a consequence, artifacts can degrade the perceived quality. Using a linear frequency basis adapted to the non-stationarities of the speech signal, the Fan Chirp Transformation (FChT) have demonstrated harmonicity at frequencies higher than usually observed from the DFT which motivates a full-band modeling. The previously proposed Adaptive Quasi-Harmonic model (aQHM) offers even more flexibility than the FChT by using a non-linear frequency basis. In the current paper, exploiting the properties of aQHM, we describe a full-band Adaptive Harmonic Model (aHM) along with detailed descriptions of its corresponding algorithms for the estimation of harmonics up to the Nyquist frequency. Formal listening tests show that the speech reconstructed using aHM is nearly indistinguishable from the original speech. Experiments with synthetic signals also show that the proposed aHM globally outperforms previous sinusoidal and harmonic models in terms of precision in estimating the sinusoidal parameters. As a perspective, such a precision is interesting for building higher level models upon the sinusoidal parameters, like spectral envelopes for speech synthesis.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2266772","citationCount":"56","resultStr":"{\"title\":\"Analysis and Synthesis of Speech Using an Adaptive Full-Band Harmonic Model\",\"authors\":\"G. Degottex, Y. Stylianou\",\"doi\":\"10.1109/TASL.2013.2266772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voice models often use frequency limits to split the speech spectrum into two or more voiced/unvoiced frequency bands. However, from the voice production, the amplitude spectrum of the voiced source decreases smoothly without any abrupt frequency limit. Accordingly, multiband models struggle to estimate these limits and, as a consequence, artifacts can degrade the perceived quality. Using a linear frequency basis adapted to the non-stationarities of the speech signal, the Fan Chirp Transformation (FChT) have demonstrated harmonicity at frequencies higher than usually observed from the DFT which motivates a full-band modeling. The previously proposed Adaptive Quasi-Harmonic model (aQHM) offers even more flexibility than the FChT by using a non-linear frequency basis. In the current paper, exploiting the properties of aQHM, we describe a full-band Adaptive Harmonic Model (aHM) along with detailed descriptions of its corresponding algorithms for the estimation of harmonics up to the Nyquist frequency. Formal listening tests show that the speech reconstructed using aHM is nearly indistinguishable from the original speech. Experiments with synthetic signals also show that the proposed aHM globally outperforms previous sinusoidal and harmonic models in terms of precision in estimating the sinusoidal parameters. As a perspective, such a precision is interesting for building higher level models upon the sinusoidal parameters, like spectral envelopes for speech synthesis.\",\"PeriodicalId\":55014,\"journal\":{\"name\":\"IEEE Transactions on Audio Speech and Language Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TASL.2013.2266772\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Audio Speech and Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASL.2013.2266772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2266772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

语音模型通常使用频率限制将语音频谱划分为两个或多个浊音/非浊音频段。但从声音产生来看,浊音源的幅度谱平滑下降,没有突兀的频率限制。因此,多波段模型难以估计这些限制,因此,伪像会降低感知质量。使用适应语音信号非平稳性的线性频率基,风扇啁啾变换(FChT)在比DFT通常观察到的频率更高的频率下显示出谐波,这激发了全频带建模。先前提出的自适应准谐波模型(aQHM)通过使用非线性频率基,比FChT具有更大的灵活性。在本文中,我们利用aQHM的特性,描述了一种全频段自适应谐波模型(aHM),并详细描述了其相应的算法,用于估计奈奎斯特频率以下的谐波。正式的听力测试表明,使用aHM重建的语音与原始语音几乎没有区别。对合成信号的实验也表明,所提出的aHM在估计正弦参数的精度方面总体上优于先前的正弦和谐波模型。从一个角度来看,这样的精度对于在正弦参数上建立更高层次的模型是很有趣的,比如语音合成的频谱包络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and Synthesis of Speech Using an Adaptive Full-Band Harmonic Model
Voice models often use frequency limits to split the speech spectrum into two or more voiced/unvoiced frequency bands. However, from the voice production, the amplitude spectrum of the voiced source decreases smoothly without any abrupt frequency limit. Accordingly, multiband models struggle to estimate these limits and, as a consequence, artifacts can degrade the perceived quality. Using a linear frequency basis adapted to the non-stationarities of the speech signal, the Fan Chirp Transformation (FChT) have demonstrated harmonicity at frequencies higher than usually observed from the DFT which motivates a full-band modeling. The previously proposed Adaptive Quasi-Harmonic model (aQHM) offers even more flexibility than the FChT by using a non-linear frequency basis. In the current paper, exploiting the properties of aQHM, we describe a full-band Adaptive Harmonic Model (aHM) along with detailed descriptions of its corresponding algorithms for the estimation of harmonics up to the Nyquist frequency. Formal listening tests show that the speech reconstructed using aHM is nearly indistinguishable from the original speech. Experiments with synthetic signals also show that the proposed aHM globally outperforms previous sinusoidal and harmonic models in terms of precision in estimating the sinusoidal parameters. As a perspective, such a precision is interesting for building higher level models upon the sinusoidal parameters, like spectral envelopes for speech synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1