在体内超越衍射极限的声分子成像

Thomas M. Kierski;Rachel W. Walmer;James K. Tsuruta;Jianhua Yin;Emmanuel Chérin;F. Stuart Foster;Christine E. M. Demore;Isabel G. Newsome;Gianmarco F. Pinton;Paul A. Dayton
{"title":"在体内超越衍射极限的声分子成像","authors":"Thomas M. Kierski;Rachel W. Walmer;James K. Tsuruta;Jianhua Yin;Emmanuel Chérin;F. Stuart Foster;Christine E. M. Demore;Isabel G. Newsome;Gianmarco F. Pinton;Paul A. Dayton","doi":"10.1109/OJUFFC.2022.3212342","DOIUrl":null,"url":null,"abstract":"Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers in vivo by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged. However, these approaches do not translate directly to molecular imaging. In this work, we demonstrate super-resolution visualization of biomarker expression in vivo using superharmonic ultrasound imaging (SpHI) with dual-frequency transducers, targeted contrast agents, and localization microscopy processing. We validate and optimize the proposed method in vitro using concurrent optical and ultrasound microscopy and a microvessel phantom. With the same technique, we perform a proof-of-concept experiment in vivo in a rat fibrosarcoma model and create maps of biomarker expression co-registered with images of microvasculature. From these images, we measure a resolution of \n<inline-formula> <tex-math>$23~\\mathrm {\\mu}{\\text {m}}$ </tex-math></inline-formula>\n, a nearly fivefold improvement in resolution compared to previous diffraction-limited molecular imaging studies.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"2 ","pages":"237-249"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9912413","citationCount":"0","resultStr":"{\"title\":\"Acoustic Molecular Imaging Beyond the Diffraction Limit In Vivo\",\"authors\":\"Thomas M. Kierski;Rachel W. Walmer;James K. Tsuruta;Jianhua Yin;Emmanuel Chérin;F. Stuart Foster;Christine E. M. Demore;Isabel G. Newsome;Gianmarco F. Pinton;Paul A. Dayton\",\"doi\":\"10.1109/OJUFFC.2022.3212342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers in vivo by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged. However, these approaches do not translate directly to molecular imaging. In this work, we demonstrate super-resolution visualization of biomarker expression in vivo using superharmonic ultrasound imaging (SpHI) with dual-frequency transducers, targeted contrast agents, and localization microscopy processing. We validate and optimize the proposed method in vitro using concurrent optical and ultrasound microscopy and a microvessel phantom. With the same technique, we perform a proof-of-concept experiment in vivo in a rat fibrosarcoma model and create maps of biomarker expression co-registered with images of microvasculature. From these images, we measure a resolution of \\n<inline-formula> <tex-math>$23~\\\\mathrm {\\\\mu}{\\\\text {m}}$ </tex-math></inline-formula>\\n, a nearly fivefold improvement in resolution compared to previous diffraction-limited molecular imaging studies.\",\"PeriodicalId\":73301,\"journal\":{\"name\":\"IEEE open journal of ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"2 \",\"pages\":\"237-249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9912413\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9912413/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9912413/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超声分子成像(USMI)是一种通过对微泡造影剂(MCAs)进行成像来无创估计体内分子标记物分布的技术,这些微泡造影剂已被修饰为靶向血管内皮上的感兴趣受体。USMI与临床前和临床癌症研究尤其相关,并已用于预测肿瘤恶性程度和对治疗的反应。在过去的十年中,已经出现了一些方法,这些方法将对比度增强超声的分辨率提高了一个数量级,并允许研究人员对单个毛细血管进行无创成像。然而,这些方法不能直接转化为分子成像。在这项工作中,我们利用双频换能器、靶向造影剂和定位显微镜处理的超谐波超声成像(SpHI)展示了生物标志物在体内表达的超分辨率可视化。我们在体外使用同步光学和超声显微镜以及微血管模型验证并优化了所提出的方法。使用相同的技术,我们在大鼠纤维肉瘤模型中进行了概念验证实验,并创建了与微血管图像共同注册的生物标志物表达图谱。从这些图像中,我们测量到的分辨率为$23~\ mathm {\mu}{\text {m}}$,与之前衍射受限的分子成像研究相比,分辨率提高了近五倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acoustic Molecular Imaging Beyond the Diffraction Limit In Vivo
Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers in vivo by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged. However, these approaches do not translate directly to molecular imaging. In this work, we demonstrate super-resolution visualization of biomarker expression in vivo using superharmonic ultrasound imaging (SpHI) with dual-frequency transducers, targeted contrast agents, and localization microscopy processing. We validate and optimize the proposed method in vitro using concurrent optical and ultrasound microscopy and a microvessel phantom. With the same technique, we perform a proof-of-concept experiment in vivo in a rat fibrosarcoma model and create maps of biomarker expression co-registered with images of microvasculature. From these images, we measure a resolution of $23~\mathrm {\mu}{\text {m}}$ , a nearly fivefold improvement in resolution compared to previous diffraction-limited molecular imaging studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary Demonstration of Pulse-Echo Imaging With a Long Monolithic Flexible CMUT Array The 3D Estimation of Mechanical Wave Velocities in the Heart: Methods and Insights Direct Digital Simultaneous Phase-Amplitude Noise and Allan Deviation Measurement System Rochelle Salt Revisited for Eco-Designed Ultrasonic Transducers 3-D Object Reconstruction From Outdoor Ultrasonic Image and Variation Autoencoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1