对抗性风险的多面性:扩展研究

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2023-08-07 DOI:10.1109/TIT.2023.3303221
Muni Sreenivas Pydi;Varun Jog
{"title":"对抗性风险的多面性:扩展研究","authors":"Muni Sreenivas Pydi;Varun Jog","doi":"10.1109/TIT.2023.3303221","DOIUrl":null,"url":null,"abstract":"Adversarial risk quantifies the performance of classifiers on adversarially perturbed data. Numerous definitions of adversarial risk—not all mathematically rigorous and differing subtly in the details—have appeared in the literature. In this paper, we revisit these definitions, fix measure theoretic issues, and critically examine their similarities and differences. Our technical tools derive from optimal transport, robust statistics, functional analysis, and game theory. Our contributions include the following: generalizing Strassen’s theorem to the unbalanced optimal transport setting with applications to adversarial classification with unequal priors; showing an equivalence between adversarial robustness and robust hypothesis testing with \n<inline-formula> <tex-math>$\\infty $ </tex-math></inline-formula>\n-Wasserstein uncertainty sets; proving the existence of a pure Nash equilibrium in the two-player game between the adversary and the algorithm; and characterizing adversarial risk by the minimum Bayes error between a pair of distributions belonging to the \n<inline-formula> <tex-math>$\\infty $ </tex-math></inline-formula>\n-Wasserstein uncertainty sets. Our results generalize and deepen recently discovered connections between optimal transport and adversarial robustness and reveal new connections to Choquet capacities and game theory.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 1","pages":"550-570"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Many Faces of Adversarial Risk: An Expanded Study\",\"authors\":\"Muni Sreenivas Pydi;Varun Jog\",\"doi\":\"10.1109/TIT.2023.3303221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial risk quantifies the performance of classifiers on adversarially perturbed data. Numerous definitions of adversarial risk—not all mathematically rigorous and differing subtly in the details—have appeared in the literature. In this paper, we revisit these definitions, fix measure theoretic issues, and critically examine their similarities and differences. Our technical tools derive from optimal transport, robust statistics, functional analysis, and game theory. Our contributions include the following: generalizing Strassen’s theorem to the unbalanced optimal transport setting with applications to adversarial classification with unequal priors; showing an equivalence between adversarial robustness and robust hypothesis testing with \\n<inline-formula> <tex-math>$\\\\infty $ </tex-math></inline-formula>\\n-Wasserstein uncertainty sets; proving the existence of a pure Nash equilibrium in the two-player game between the adversary and the algorithm; and characterizing adversarial risk by the minimum Bayes error between a pair of distributions belonging to the \\n<inline-formula> <tex-math>$\\\\infty $ </tex-math></inline-formula>\\n-Wasserstein uncertainty sets. Our results generalize and deepen recently discovered connections between optimal transport and adversarial robustness and reveal new connections to Choquet capacities and game theory.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 1\",\"pages\":\"550-570\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10210607/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10210607/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

对抗风险量化了分类器在对抗扰动数据上的性能。文献中出现了大量关于对抗风险的定义--这些定义在数学上并不严谨,在细节上也有细微差别。在本文中,我们将重新审视这些定义,解决计量理论问题,并批判性地研究它们之间的异同。我们的技术工具来自最优传输、稳健统计、函数分析和博弈论。我们的贡献包括以下几点:将斯特拉森(Strassen)定理推广到不平衡最优传输设置,并将其应用于具有不平等先验的对抗分类;证明了对抗鲁棒性与具有 $\infty $ -Wasserstein 不确定性集的鲁棒假设检验之间的等价性;证明了对抗者与算法之间的双人博弈中存在纯纳什均衡;以及通过属于 $\infty $ -Wasserstein 不确定性集的一对分布之间的最小贝叶斯误差来表征对抗风险。我们的结果概括并深化了最近发现的最优传输与对抗鲁棒性之间的联系,并揭示了与 Choquet 容量和博弈论之间的新联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Many Faces of Adversarial Risk: An Expanded Study
Adversarial risk quantifies the performance of classifiers on adversarially perturbed data. Numerous definitions of adversarial risk—not all mathematically rigorous and differing subtly in the details—have appeared in the literature. In this paper, we revisit these definitions, fix measure theoretic issues, and critically examine their similarities and differences. Our technical tools derive from optimal transport, robust statistics, functional analysis, and game theory. Our contributions include the following: generalizing Strassen’s theorem to the unbalanced optimal transport setting with applications to adversarial classification with unequal priors; showing an equivalence between adversarial robustness and robust hypothesis testing with $\infty $ -Wasserstein uncertainty sets; proving the existence of a pure Nash equilibrium in the two-player game between the adversary and the algorithm; and characterizing adversarial risk by the minimum Bayes error between a pair of distributions belonging to the $\infty $ -Wasserstein uncertainty sets. Our results generalize and deepen recently discovered connections between optimal transport and adversarial robustness and reveal new connections to Choquet capacities and game theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1