基于介电泳的纳米和微粒子操作和电容检测集成芯片实验室

IF 3.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Circuits and Systems Pub Date : 2012-03-02 DOI:10.1109/TBCAS.2013.2271727
M. A. Miled, G. Massicotte, M. Sawan
{"title":"基于介电泳的纳米和微粒子操作和电容检测集成芯片实验室","authors":"M. A. Miled, G. Massicotte, M. Sawan","doi":"10.1109/TBCAS.2013.2271727","DOIUrl":null,"url":null,"abstract":"We present in this paper a new Lab-on-Chip (LoC) architecture for dielectrophoresis-based cell manipulation, detection, and capacitive measurement. The proposed LoC is built around a CMOS full-custom chip and a microfluidic structure. The CMOS chip is used to deliver all parameters required to control the dielectrophoresis (DEP) features such as frequency, phase, and amplitude of signals spread on in-channel electrodes of the LoC. It is integrated to the LoC and experimental results are related to micro and nano particles manipulation and detection in a microfluidic platform. The proposed microsystem includes an on-chip 27-bit frequency divider, a digital phase controller with a 3.6° phase shift resolution and a 2.5 V dynamic range. The sensing module is composed of a 3 × 3 capacitive sensor array with 10 fF per mV sensitivity, and a dynamic range of 1.5 V. The obtained results show an efficient nano and micro-particles (PC05N, PA04N and PS03N) separation based on frequency segregation with low voltages less than 1.7 V and a fully integrated and reconfigurable system.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"6 1","pages":"120-132"},"PeriodicalIF":3.8000,"publicationDate":"2012-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2013.2271727","citationCount":"59","resultStr":"{\"title\":\"Dielectrophoresis-Based Integrated Lab-on-Chip for Nano and Micro-Particles Manipulation and Capacitive Detection\",\"authors\":\"M. A. Miled, G. Massicotte, M. Sawan\",\"doi\":\"10.1109/TBCAS.2013.2271727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present in this paper a new Lab-on-Chip (LoC) architecture for dielectrophoresis-based cell manipulation, detection, and capacitive measurement. The proposed LoC is built around a CMOS full-custom chip and a microfluidic structure. The CMOS chip is used to deliver all parameters required to control the dielectrophoresis (DEP) features such as frequency, phase, and amplitude of signals spread on in-channel electrodes of the LoC. It is integrated to the LoC and experimental results are related to micro and nano particles manipulation and detection in a microfluidic platform. The proposed microsystem includes an on-chip 27-bit frequency divider, a digital phase controller with a 3.6° phase shift resolution and a 2.5 V dynamic range. The sensing module is composed of a 3 × 3 capacitive sensor array with 10 fF per mV sensitivity, and a dynamic range of 1.5 V. The obtained results show an efficient nano and micro-particles (PC05N, PA04N and PS03N) separation based on frequency segregation with low voltages less than 1.7 V and a fully integrated and reconfigurable system.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":\"6 1\",\"pages\":\"120-132\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2012-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TBCAS.2013.2271727\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2013.2271727\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2013.2271727","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 59

摘要

我们在本文中提出了一种新的芯片实验室(LoC)架构,用于基于介电泳的细胞操作,检测和电容测量。提出的LoC是围绕CMOS全定制芯片和微流控结构构建的。CMOS芯片用于提供控制介质电泳(DEP)特征所需的所有参数,如频率、相位和信号在LoC的通道内电极上传播的幅度。它集成到LoC中,实验结果与微流控平台中微纳米粒子的操作和检测有关。所提出的微系统包括一个片上27位分频器,一个3.6°相移分辨率和2.5 V动态范围的数字相位控制器。传感模块由3 × 3电容式传感器阵列组成,灵敏度为10ff / mV,动态范围为1.5 V。研究结果表明,在低于1.7 V的低电压下,基于频率分离的纳米粒子和微粒(PC05N、PA04N和PS03N)的分离是一个完全集成和可重构的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dielectrophoresis-Based Integrated Lab-on-Chip for Nano and Micro-Particles Manipulation and Capacitive Detection
We present in this paper a new Lab-on-Chip (LoC) architecture for dielectrophoresis-based cell manipulation, detection, and capacitive measurement. The proposed LoC is built around a CMOS full-custom chip and a microfluidic structure. The CMOS chip is used to deliver all parameters required to control the dielectrophoresis (DEP) features such as frequency, phase, and amplitude of signals spread on in-channel electrodes of the LoC. It is integrated to the LoC and experimental results are related to micro and nano particles manipulation and detection in a microfluidic platform. The proposed microsystem includes an on-chip 27-bit frequency divider, a digital phase controller with a 3.6° phase shift resolution and a 2.5 V dynamic range. The sensing module is composed of a 3 × 3 capacitive sensor array with 10 fF per mV sensitivity, and a dynamic range of 1.5 V. The obtained results show an efficient nano and micro-particles (PC05N, PA04N and PS03N) separation based on frequency segregation with low voltages less than 1.7 V and a fully integrated and reconfigurable system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Circuits and Systems
IEEE Transactions on Biomedical Circuits and Systems 工程技术-工程:电子与电气
CiteScore
10.00
自引率
13.70%
发文量
174
审稿时长
3 months
期刊介绍: The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.
期刊最新文献
A 1024-Channel Simultaneous Electrophysiological and Electrochemical Neural Recording System with In-Pixel Digitization and Crosstalk Compensation A 13.56-MHz 93.5%-Efficiency Optimal On/Off Timing Tracking Active Rectifier with Digital Feedback-Based Adaptive Delay Control An Ultra-Low Power Wearable BMI System with Continual Learning Capabilities Real-Time sEMG Processing with Spiking Neural Networks on a Low-Power 5K-LUT FPGA A Tiny Transformer for Low-Power Arrhythmia Classification on Microcontrollers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1