{"title":"基于矢量生物阻抗测量的纵向膝关节水肿和血流评估稳健系统","authors":"Sinan Hersek, H. Toreyin, O. Inan","doi":"10.1109/TBCAS.2015.2487300","DOIUrl":null,"url":null,"abstract":"We present a robust vector bioimpedance measurement system for longitudinal knee joint health assessment, capable of acquiring high resolution static (slowly varying over the course of hours to days) and dynamic (rapidly varying on the order of milli-seconds) bioresistance and bioreactance signals. Occupying an area of 78×90 mm2 and consuming 0.25 W when supplied with ±5 V, the front-end achieves a dynamic range of 345 Ω and noise floor of 0.018 mΩrms (resistive) and 0.055 mΩrms (reactive) within a bandwidth of 0.1-20 Hz. A microcontroller allows real-time calibration to minimize errors due to environmental variability (e.g., temperature) that can be experienced outside of lab environments, and enables data storage on a micro secure digital card. The acquired signals are then processed using customized physiology-driven algorithms to extract musculoskeletal (edema) and cardiovascular (local blood volume pulse) features from the knee joint. In a feasibility study, we found statistically significant differences between the injured and contralateral static knee impedance measures for two subjects with recent unilateral knee injury compared to seven controls. Specifically, the impedance was lower for the injured knees, supporting the physiological expectations for increased edema and damaged cell membranes. In a second feasibility study, we demonstrate the sensitivity of the dynamic impedance measures with a cold-pressor test, with a 20 mΩ decrease in the pulsatile resistance associated with increased downstream peripheral vascular resistance. The proposed system will serve as a foundation for future efforts aimed at quantifying joint health status continuously during normal daily life.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2487300","citationCount":"37","resultStr":"{\"title\":\"A Robust System for Longitudinal Knee Joint Edema and Blood Flow Assessment Based on Vector Bioimpedance Measurements\",\"authors\":\"Sinan Hersek, H. Toreyin, O. Inan\",\"doi\":\"10.1109/TBCAS.2015.2487300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a robust vector bioimpedance measurement system for longitudinal knee joint health assessment, capable of acquiring high resolution static (slowly varying over the course of hours to days) and dynamic (rapidly varying on the order of milli-seconds) bioresistance and bioreactance signals. Occupying an area of 78×90 mm2 and consuming 0.25 W when supplied with ±5 V, the front-end achieves a dynamic range of 345 Ω and noise floor of 0.018 mΩrms (resistive) and 0.055 mΩrms (reactive) within a bandwidth of 0.1-20 Hz. A microcontroller allows real-time calibration to minimize errors due to environmental variability (e.g., temperature) that can be experienced outside of lab environments, and enables data storage on a micro secure digital card. The acquired signals are then processed using customized physiology-driven algorithms to extract musculoskeletal (edema) and cardiovascular (local blood volume pulse) features from the knee joint. In a feasibility study, we found statistically significant differences between the injured and contralateral static knee impedance measures for two subjects with recent unilateral knee injury compared to seven controls. Specifically, the impedance was lower for the injured knees, supporting the physiological expectations for increased edema and damaged cell membranes. In a second feasibility study, we demonstrate the sensitivity of the dynamic impedance measures with a cold-pressor test, with a 20 mΩ decrease in the pulsatile resistance associated with increased downstream peripheral vascular resistance. The proposed system will serve as a foundation for future efforts aimed at quantifying joint health status continuously during normal daily life.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2487300\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2015.2487300\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2015.2487300","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Robust System for Longitudinal Knee Joint Edema and Blood Flow Assessment Based on Vector Bioimpedance Measurements
We present a robust vector bioimpedance measurement system for longitudinal knee joint health assessment, capable of acquiring high resolution static (slowly varying over the course of hours to days) and dynamic (rapidly varying on the order of milli-seconds) bioresistance and bioreactance signals. Occupying an area of 78×90 mm2 and consuming 0.25 W when supplied with ±5 V, the front-end achieves a dynamic range of 345 Ω and noise floor of 0.018 mΩrms (resistive) and 0.055 mΩrms (reactive) within a bandwidth of 0.1-20 Hz. A microcontroller allows real-time calibration to minimize errors due to environmental variability (e.g., temperature) that can be experienced outside of lab environments, and enables data storage on a micro secure digital card. The acquired signals are then processed using customized physiology-driven algorithms to extract musculoskeletal (edema) and cardiovascular (local blood volume pulse) features from the knee joint. In a feasibility study, we found statistically significant differences between the injured and contralateral static knee impedance measures for two subjects with recent unilateral knee injury compared to seven controls. Specifically, the impedance was lower for the injured knees, supporting the physiological expectations for increased edema and damaged cell membranes. In a second feasibility study, we demonstrate the sensitivity of the dynamic impedance measures with a cold-pressor test, with a 20 mΩ decrease in the pulsatile resistance associated with increased downstream peripheral vascular resistance. The proposed system will serve as a foundation for future efforts aimed at quantifying joint health status continuously during normal daily life.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.