Abhishek Roy, Alicia Klinefelter, Farah B. Yahya, Xing Chen, Luis Gonzalez-Guerrero, Christopher J. Lukas, Divya Akella, James Boley, Kyle Craig, M. Faisal, Seunghyun Oh, N. Roberts, Y. Shakhsheer, A. Shrivastava, D. Vasudevan, D. Wentzloff, B. Calhoun
{"title":"6.45 $\\mu{\\rm W}$自供电SoC集成能量收集电源管理和ULP非对称无线电便携式生物医学系统","authors":"Abhishek Roy, Alicia Klinefelter, Farah B. Yahya, Xing Chen, Luis Gonzalez-Guerrero, Christopher J. Lukas, Divya Akella, James Boley, Kyle Craig, M. Faisal, Seunghyun Oh, N. Roberts, Y. Shakhsheer, A. Shrivastava, D. Vasudevan, D. Wentzloff, B. Calhoun","doi":"10.1109/TBCAS.2015.2498643","DOIUrl":null,"url":null,"abstract":"This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"9 1","pages":"862-874"},"PeriodicalIF":3.8000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2498643","citationCount":"74","resultStr":"{\"title\":\"A 6.45 $\\\\mu{\\\\rm W}$ Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems\",\"authors\":\"Abhishek Roy, Alicia Klinefelter, Farah B. Yahya, Xing Chen, Luis Gonzalez-Guerrero, Christopher J. Lukas, Divya Akella, James Boley, Kyle Craig, M. Faisal, Seunghyun Oh, N. Roberts, Y. Shakhsheer, A. Shrivastava, D. Vasudevan, D. Wentzloff, B. Calhoun\",\"doi\":\"10.1109/TBCAS.2015.2498643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":\"9 1\",\"pages\":\"862-874\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2498643\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2015.2498643\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2015.2498643","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A 6.45 $\mu{\rm W}$ Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems
This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.