6.45 $\mu{\rm W}$自供电SoC集成能量收集电源管理和ULP非对称无线电便携式生物医学系统

IF 3.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Circuits and Systems Pub Date : 2015-12-28 DOI:10.1109/TBCAS.2015.2498643
Abhishek Roy, Alicia Klinefelter, Farah B. Yahya, Xing Chen, Luis Gonzalez-Guerrero, Christopher J. Lukas, Divya Akella, James Boley, Kyle Craig, M. Faisal, Seunghyun Oh, N. Roberts, Y. Shakhsheer, A. Shrivastava, D. Vasudevan, D. Wentzloff, B. Calhoun
{"title":"6.45 $\\mu{\\rm W}$自供电SoC集成能量收集电源管理和ULP非对称无线电便携式生物医学系统","authors":"Abhishek Roy, Alicia Klinefelter, Farah B. Yahya, Xing Chen, Luis Gonzalez-Guerrero, Christopher J. Lukas, Divya Akella, James Boley, Kyle Craig, M. Faisal, Seunghyun Oh, N. Roberts, Y. Shakhsheer, A. Shrivastava, D. Vasudevan, D. Wentzloff, B. Calhoun","doi":"10.1109/TBCAS.2015.2498643","DOIUrl":null,"url":null,"abstract":"This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"9 1","pages":"862-874"},"PeriodicalIF":3.8000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2498643","citationCount":"74","resultStr":"{\"title\":\"A 6.45 $\\\\mu{\\\\rm W}$ Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems\",\"authors\":\"Abhishek Roy, Alicia Klinefelter, Farah B. Yahya, Xing Chen, Luis Gonzalez-Guerrero, Christopher J. Lukas, Divya Akella, James Boley, Kyle Craig, M. Faisal, Seunghyun Oh, N. Roberts, Y. Shakhsheer, A. Shrivastava, D. Vasudevan, D. Wentzloff, B. Calhoun\",\"doi\":\"10.1109/TBCAS.2015.2498643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":\"9 1\",\"pages\":\"862-874\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2498643\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2015.2498643\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2015.2498643","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 74

摘要

本文介绍了一种无电池的片上系统(SoC),它可以从室内太阳能电池和/或身体上的热电发电机(teg)收集能量。该SoC传感平台采用商用0.13 μW工艺制造,由具有最大功率点跟踪功能的集成能量收集和电源管理单元(EH-PMU)、多种传感模式、可编程核心和具有多个硬件加速器的低功耗微控制器组成,可实现节能数字信号处理、用于无线传输的超低功耗(ULP)非对称无线电和100 nW唤醒无线电。EH-PMU在100 μA负载下的峰值端到端效率为75%。在一个示例运动检测应用程序中,SoC通过SPI从加速度计读取数据,处理数据,并通过无线电发送数据。SPI和数字处理功耗仅为2.27 μW,而集成无线电在187.5 kbps传输时功耗为4.18 μW,总计6.45 μW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 6.45 $\mu{\rm W}$ Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems
This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Circuits and Systems
IEEE Transactions on Biomedical Circuits and Systems 工程技术-工程:电子与电气
CiteScore
10.00
自引率
13.70%
发文量
174
审稿时长
3 months
期刊介绍: The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.
期刊最新文献
A 1024-Channel Simultaneous Electrophysiological and Electrochemical Neural Recording System with In-Pixel Digitization and Crosstalk Compensation A 13.56-MHz 93.5%-Efficiency Optimal On/Off Timing Tracking Active Rectifier with Digital Feedback-Based Adaptive Delay Control An Ultra-Low Power Wearable BMI System with Continual Learning Capabilities Real-Time sEMG Processing with Spiking Neural Networks on a Low-Power 5K-LUT FPGA A Tiny Transformer for Low-Power Arrhythmia Classification on Microcontrollers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1