Po-Hung Kuo, Jui-Chang Kuo, Hsiao-Ting Hsueh, J. Hsieh, Yi-Chun Huang, Tao Wang, Yen-Hung Lin, Chih-Ting Lin, Yao-Joe Yang, Shey-Shi Lu
{"title":"用于风险预测的快速血液筛查试验的智能CMOS分析SoC","authors":"Po-Hung Kuo, Jui-Chang Kuo, Hsiao-Ting Hsueh, J. Hsieh, Yi-Chun Huang, Tao Wang, Yen-Hung Lin, Chih-Ting Lin, Yao-Joe Yang, Shey-Shi Lu","doi":"10.1109/TBCAS.2015.2507618","DOIUrl":null,"url":null,"abstract":"A micro-controller unit (MCU) assisted immunoassay lab-on-a-chip is realized in 0.35 μm CMOS technology. The MCU automatically controls the detection procedure including blood filtration through a nonporous aluminum oxide membrane, bimolecular conjugation with antibodies attached to magnetic beads, electrolytic pumping, magnetic flushing and threshold detection based on Hall sensor array readout analysis. To verify the function of this chip, in-vitro Tumor necrosis factor- α (TNF- α) and N-terminal pro-brain natriuretic peptide (NT-proBNP) tests are performed by this 9 mm 2-sized single chip. The cost, efficiency and portability are considerably improved compared to the prior art.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"9 1","pages":"790-800"},"PeriodicalIF":3.8000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2507618","citationCount":"10","resultStr":"{\"title\":\"A Smart CMOS Assay SoC for Rapid Blood Screening Test of Risk Prediction\",\"authors\":\"Po-Hung Kuo, Jui-Chang Kuo, Hsiao-Ting Hsueh, J. Hsieh, Yi-Chun Huang, Tao Wang, Yen-Hung Lin, Chih-Ting Lin, Yao-Joe Yang, Shey-Shi Lu\",\"doi\":\"10.1109/TBCAS.2015.2507618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A micro-controller unit (MCU) assisted immunoassay lab-on-a-chip is realized in 0.35 μm CMOS technology. The MCU automatically controls the detection procedure including blood filtration through a nonporous aluminum oxide membrane, bimolecular conjugation with antibodies attached to magnetic beads, electrolytic pumping, magnetic flushing and threshold detection based on Hall sensor array readout analysis. To verify the function of this chip, in-vitro Tumor necrosis factor- α (TNF- α) and N-terminal pro-brain natriuretic peptide (NT-proBNP) tests are performed by this 9 mm 2-sized single chip. The cost, efficiency and portability are considerably improved compared to the prior art.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":\"9 1\",\"pages\":\"790-800\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2507618\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2015.2507618\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2015.2507618","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Smart CMOS Assay SoC for Rapid Blood Screening Test of Risk Prediction
A micro-controller unit (MCU) assisted immunoassay lab-on-a-chip is realized in 0.35 μm CMOS technology. The MCU automatically controls the detection procedure including blood filtration through a nonporous aluminum oxide membrane, bimolecular conjugation with antibodies attached to magnetic beads, electrolytic pumping, magnetic flushing and threshold detection based on Hall sensor array readout analysis. To verify the function of this chip, in-vitro Tumor necrosis factor- α (TNF- α) and N-terminal pro-brain natriuretic peptide (NT-proBNP) tests are performed by this 9 mm 2-sized single chip. The cost, efficiency and portability are considerably improved compared to the prior art.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.