光解与x射线主导区

IF 26.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Annual Review of Astronomy and Astrophysics Pub Date : 2022-02-11 DOI:10.1146/annurev-astro-052920-010254
M. Wolfire, L. Vallini, M. Chevance
{"title":"光解与x射线主导区","authors":"M. Wolfire, L. Vallini, M. Chevance","doi":"10.1146/annurev-astro-052920-010254","DOIUrl":null,"url":null,"abstract":"The radiation from stars and active galactic nuclei (AGNs) creates photodissociation regions (PDRs) and X-ray-dominated regions (XDRs), where the chemistry or heating are dominated by far-ultraviolet (FUV) radiation or X-ray radiation, respectively. PDRs include a wide range of environments, from the diffuse interstellar medium to dense star-forming regions. XDRs are found in the center of galaxies hosting AGNs, in protostellar disks, and in the vicinity of X-ray binaries. In this review, we describe the dominant thermal, chemical, and radiation transfer processes in PDRs and XDRs, as well as give a brief description of models and their use for analyzing observations. We then present recent results from Milky Way, nearby extragalactic, and high-redshift observations. Several important results include the following: ▪ Velocity-resolved PDR lines reveal the kinematics of the neutral atomic gas and provide constraints on the stellar feedback process. Their interpretation is, however, in dispute, as observations suggest a prominent role for stellar winds, whereas they are much less important in theoretical models. ▪ A significant fraction of molecular mass resides in CO-dark gas especially in low-metallicity and/or highly irradiated environments. ▪ The CO ladder and [Ci][Formula: see text][Cii] ratios can determine if FUV or X rays dominate the ISM heating of extragalactic sources. ▪ With Atacama Large Millimeter/submillimeter Array, PDR and XDR tracers are now routinely detected on galactic scales over cosmic time. This makes it possible to link the star-formation history of the Universe to the evolution of the physical and chemical properties of the gas. Expected final online publication date for the Annual Review of Astronomy and Astrophysics Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"1 1","pages":""},"PeriodicalIF":26.3000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Photodissociation and X-Ray-Dominated Regions\",\"authors\":\"M. Wolfire, L. Vallini, M. Chevance\",\"doi\":\"10.1146/annurev-astro-052920-010254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radiation from stars and active galactic nuclei (AGNs) creates photodissociation regions (PDRs) and X-ray-dominated regions (XDRs), where the chemistry or heating are dominated by far-ultraviolet (FUV) radiation or X-ray radiation, respectively. PDRs include a wide range of environments, from the diffuse interstellar medium to dense star-forming regions. XDRs are found in the center of galaxies hosting AGNs, in protostellar disks, and in the vicinity of X-ray binaries. In this review, we describe the dominant thermal, chemical, and radiation transfer processes in PDRs and XDRs, as well as give a brief description of models and their use for analyzing observations. We then present recent results from Milky Way, nearby extragalactic, and high-redshift observations. Several important results include the following: ▪ Velocity-resolved PDR lines reveal the kinematics of the neutral atomic gas and provide constraints on the stellar feedback process. Their interpretation is, however, in dispute, as observations suggest a prominent role for stellar winds, whereas they are much less important in theoretical models. ▪ A significant fraction of molecular mass resides in CO-dark gas especially in low-metallicity and/or highly irradiated environments. ▪ The CO ladder and [Ci][Formula: see text][Cii] ratios can determine if FUV or X rays dominate the ISM heating of extragalactic sources. ▪ With Atacama Large Millimeter/submillimeter Array, PDR and XDR tracers are now routinely detected on galactic scales over cosmic time. This makes it possible to link the star-formation history of the Universe to the evolution of the physical and chemical properties of the gas. Expected final online publication date for the Annual Review of Astronomy and Astrophysics Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8138,\"journal\":{\"name\":\"Annual Review of Astronomy and Astrophysics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":26.3000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-astro-052920-010254\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-astro-052920-010254","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 19

摘要

来自恒星和活动星系核(agn)的辐射产生光解区(pdr)和x射线主导区(xdr),其中化学或加热分别由远紫外线(FUV)辐射或x射线辐射主导。pdr包括各种各样的环境,从弥漫的星际介质到密集的恒星形成区域。xdr存在于拥有agn的星系中心、原恒星盘和x射线双星附近。在这篇综述中,我们描述了pdr和xdr中主要的热、化学和辐射传递过程,并简要描述了模型及其用于分析观测结果的用途。然后,我们展示了最近来自银河系、邻近星系外以及高红移观测的结果。一些重要的结果包括:▪速度分辨PDR线揭示了中性原子气体的运动学,并提供了恒星反馈过程的约束。然而,他们的解释存在争议,因为观测表明恒星风的作用很突出,而它们在理论模型中却不那么重要。▪很大一部分分子质量存在于CO-dark气体中,特别是在低金属丰度和/或高辐射环境中。■CO梯和[Ci][公式:见原文][Ci]比值可以确定是FUV射线还是X射线主导了河外源的ISM加热。▪利用阿塔卡马大型毫米/亚毫米阵列,PDR和XDR示踪剂现在可以在宇宙时间的银河系尺度上进行常规检测。这使得将宇宙的恒星形成历史与气体的物理和化学性质的演变联系起来成为可能。《天文学和天体物理学年度评论》第60卷的最终在线出版日期预计为2022年8月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photodissociation and X-Ray-Dominated Regions
The radiation from stars and active galactic nuclei (AGNs) creates photodissociation regions (PDRs) and X-ray-dominated regions (XDRs), where the chemistry or heating are dominated by far-ultraviolet (FUV) radiation or X-ray radiation, respectively. PDRs include a wide range of environments, from the diffuse interstellar medium to dense star-forming regions. XDRs are found in the center of galaxies hosting AGNs, in protostellar disks, and in the vicinity of X-ray binaries. In this review, we describe the dominant thermal, chemical, and radiation transfer processes in PDRs and XDRs, as well as give a brief description of models and their use for analyzing observations. We then present recent results from Milky Way, nearby extragalactic, and high-redshift observations. Several important results include the following: ▪ Velocity-resolved PDR lines reveal the kinematics of the neutral atomic gas and provide constraints on the stellar feedback process. Their interpretation is, however, in dispute, as observations suggest a prominent role for stellar winds, whereas they are much less important in theoretical models. ▪ A significant fraction of molecular mass resides in CO-dark gas especially in low-metallicity and/or highly irradiated environments. ▪ The CO ladder and [Ci][Formula: see text][Cii] ratios can determine if FUV or X rays dominate the ISM heating of extragalactic sources. ▪ With Atacama Large Millimeter/submillimeter Array, PDR and XDR tracers are now routinely detected on galactic scales over cosmic time. This makes it possible to link the star-formation history of the Universe to the evolution of the physical and chemical properties of the gas. Expected final online publication date for the Annual Review of Astronomy and Astrophysics Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Astronomy and Astrophysics
Annual Review of Astronomy and Astrophysics 地学天文-天文与天体物理
CiteScore
54.80
自引率
0.60%
发文量
14
期刊介绍: The Annual Review of Astronomy and Astrophysics is covers significant developments in the field of astronomy and astrophysics including:The Sun,Solar system and extrasolar planets,Stars,Interstellar medium,Galaxy and galaxies,Active galactic nuclei,Cosmology,Instrumentation and techniques, History of the development of new areas of research.
期刊最新文献
The Star–Planet Composition Connection Solar Flare Spectroscopy Theory and Observation of Winds from Star-Forming Galaxies A Tale of Many H0 Molecular Gas and the Star-Formation Process on Cloud Scales in Nearby Galaxies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1