活细胞内染色体氧化活性的间断性和变化稳定性用于医学诊断

N. Galich
{"title":"活细胞内染色体氧化活性的间断性和变化稳定性用于医学诊断","authors":"N. Galich","doi":"10.1142/S1793048015500095","DOIUrl":null,"url":null,"abstract":"We analyze the experimental data on fluorescence of DNA complexes inside neutrophils in flow cytometry with nanometer spatial resolution. Fluorescence visualizes oxidative activity of DNA and unusual statistics for DNA complex of full set of chromosomes. The exponential increasing of high-order central moments for fluctuations of fluorescence intensity characterizes the existence of intermittency in oxidative activity of DNA. Intermittency depends on the scales (on rank) of DNA networks in given cells. In the large-scale networks (with the scales >12% size of the cells), here occurs the switching to the exponential decreasing of high-order central moments for fluctuations intensity, i.e. stable oxidative activity of DNA as it is assumed for small-scale gene networks. Distributions of Holder’s averages and high-order moments for fluctuations intensity depend on the health status and can be used for high sensitive diagnostics of health. Intermittency of large-scale correlations reflects general natural property of DNA activity and immune response on various perturbations. Intermittency reflects the mutual actions of all large-scale correlations in dense fractal networks for DNA activity and synchronization of all excitations and correlations of all chromosomes in the cells.","PeriodicalId":88835,"journal":{"name":"Biophysical reviews and letters","volume":"10 1","pages":"187-199"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793048015500095","citationCount":"2","resultStr":"{\"title\":\"Intermittency and Changing Stability of Oxidative Activity of DNA in Chromosomes Inside Living Cells for Medical Diagnostics\",\"authors\":\"N. Galich\",\"doi\":\"10.1142/S1793048015500095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the experimental data on fluorescence of DNA complexes inside neutrophils in flow cytometry with nanometer spatial resolution. Fluorescence visualizes oxidative activity of DNA and unusual statistics for DNA complex of full set of chromosomes. The exponential increasing of high-order central moments for fluctuations of fluorescence intensity characterizes the existence of intermittency in oxidative activity of DNA. Intermittency depends on the scales (on rank) of DNA networks in given cells. In the large-scale networks (with the scales >12% size of the cells), here occurs the switching to the exponential decreasing of high-order central moments for fluctuations intensity, i.e. stable oxidative activity of DNA as it is assumed for small-scale gene networks. Distributions of Holder’s averages and high-order moments for fluctuations intensity depend on the health status and can be used for high sensitive diagnostics of health. Intermittency of large-scale correlations reflects general natural property of DNA activity and immune response on various perturbations. Intermittency reflects the mutual actions of all large-scale correlations in dense fractal networks for DNA activity and synchronization of all excitations and correlations of all chromosomes in the cells.\",\"PeriodicalId\":88835,\"journal\":{\"name\":\"Biophysical reviews and letters\",\"volume\":\"10 1\",\"pages\":\"187-199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1793048015500095\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews and letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793048015500095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews and letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793048015500095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用纳米空间分辨率流式细胞术对中性粒细胞内DNA复合体的荧光进行了实验分析。荧光可视化DNA的氧化活性和不寻常的统计DNA复合体的全套染色体。荧光强度波动的高阶中心矩呈指数增长,表明DNA的氧化活性存在间歇性。间断性取决于给定细胞中DNA网络的规模(等级)。在大规模的网络中(细胞的尺度为> - 12%),这里发生了向波动强度的高阶中心矩的指数下降的转换,即DNA的稳定氧化活性,就像小规模基因网络所假设的那样。波动强度的Holder平均值和高阶矩的分布依赖于健康状态,可用于高灵敏度的健康诊断。大尺度相关性的间歇性反映了DNA活性和免疫反应对各种扰动的一般自然性质。间断性反映了DNA活性密集分形网络中所有大规模关联的相互作用,以及细胞中所有染色体的所有激发和关联的同步性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intermittency and Changing Stability of Oxidative Activity of DNA in Chromosomes Inside Living Cells for Medical Diagnostics
We analyze the experimental data on fluorescence of DNA complexes inside neutrophils in flow cytometry with nanometer spatial resolution. Fluorescence visualizes oxidative activity of DNA and unusual statistics for DNA complex of full set of chromosomes. The exponential increasing of high-order central moments for fluctuations of fluorescence intensity characterizes the existence of intermittency in oxidative activity of DNA. Intermittency depends on the scales (on rank) of DNA networks in given cells. In the large-scale networks (with the scales >12% size of the cells), here occurs the switching to the exponential decreasing of high-order central moments for fluctuations intensity, i.e. stable oxidative activity of DNA as it is assumed for small-scale gene networks. Distributions of Holder’s averages and high-order moments for fluctuations intensity depend on the health status and can be used for high sensitive diagnostics of health. Intermittency of large-scale correlations reflects general natural property of DNA activity and immune response on various perturbations. Intermittency reflects the mutual actions of all large-scale correlations in dense fractal networks for DNA activity and synchronization of all excitations and correlations of all chromosomes in the cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Repair and Regeneration of Bone Tissue by Scaffold Implant — A Biomechanical Review Markov Chains to Explore the Nanosystems for the Biophysical Studies of Cancers Role of Allee and Fear for Controlling Chaos in a Predator–Prey System with Circulation of Disease in Predator On Influence of Several Factors on Development of Tumors Role of Alternative Food in Controlling Chaotic Dynamics in an Eco-Epidemiological Model with Strong Allee Effects in Prey Populations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1