将碎片进化成先导分子

Q2 Medicine In Silico Biology Pub Date : 2010-02-15 DOI:10.1145/1722024.1722061
Soumi Sengupta, S. Bandyopadhyay
{"title":"将碎片进化成先导分子","authors":"Soumi Sengupta, S. Bandyopadhyay","doi":"10.1145/1722024.1722061","DOIUrl":null,"url":null,"abstract":"This article describes a variable string length genetic algorithm for de novo ligand design. The input to the algorithm is the active site dimensions which guides the ligand construction. A library of forty one fragments is used to construct the ligands by evaluating the combinations of these fragments. Bond stretching, angle bending, torsional terms, van der Waals and electrostatic interaction energy with distance dependent dielectric constant contribute are used to evaluate the internal energy of the ligand and the interaction energy of the ligand receptor complex. Domain specific genetic operators are used to evolve the solutions to obtain better ligands. Experimental results for HIV-1 Protease and Thrombin are provided which underline the superiority of the proposed scheme over three existing approaches.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"1 1","pages":"32"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722061","citationCount":"1","resultStr":"{\"title\":\"Evolving fragments to lead molecules\",\"authors\":\"Soumi Sengupta, S. Bandyopadhyay\",\"doi\":\"10.1145/1722024.1722061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a variable string length genetic algorithm for de novo ligand design. The input to the algorithm is the active site dimensions which guides the ligand construction. A library of forty one fragments is used to construct the ligands by evaluating the combinations of these fragments. Bond stretching, angle bending, torsional terms, van der Waals and electrostatic interaction energy with distance dependent dielectric constant contribute are used to evaluate the internal energy of the ligand and the interaction energy of the ligand receptor complex. Domain specific genetic operators are used to evolve the solutions to obtain better ligands. Experimental results for HIV-1 Protease and Thrombin are provided which underline the superiority of the proposed scheme over three existing approaches.\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":\"1 1\",\"pages\":\"32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/1722024.1722061\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1722024.1722061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1722024.1722061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一种用于从头配体设计的可变字符串长度遗传算法。该算法的输入是指导配体构建的活性位点尺寸。通过评估这些片段的组合,使用41个片段库来构建配体。用键拉伸、角度弯曲、扭转项、范德华和静电相互作用能与距离相关的介电常数贡献来评价配体的内能和配体-受体复合物的相互作用能。区域特异性遗传算子用于进化解以获得更好的配体。HIV-1蛋白酶和凝血酶的实验结果强调了该方案优于现有的三种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolving fragments to lead molecules
This article describes a variable string length genetic algorithm for de novo ligand design. The input to the algorithm is the active site dimensions which guides the ligand construction. A library of forty one fragments is used to construct the ligands by evaluating the combinations of these fragments. Bond stretching, angle bending, torsional terms, van der Waals and electrostatic interaction energy with distance dependent dielectric constant contribute are used to evaluate the internal energy of the ligand and the interaction energy of the ligand receptor complex. Domain specific genetic operators are used to evolve the solutions to obtain better ligands. Experimental results for HIV-1 Protease and Thrombin are provided which underline the superiority of the proposed scheme over three existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
In Silico Biology
In Silico Biology Computer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.
期刊最新文献
Modelling speciation: Problems and implications. Where Do CABs Exist? Verification of a specific region containing concave Actin Bundles (CABs) in a 3-Dimensional confocal image. scAN1.0: A reproducible and standardized pipeline for processing 10X single cell RNAseq data. Modeling and characterization of inter-individual variability in CD8 T cell responses in mice. Cancer immunoediting: A game theoretical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1