使用kmeans -二进制PSO杂交对基因表达数据进行双聚类

Q2 Medicine In Silico Biology Pub Date : 2010-02-15 DOI:10.1145/1722024.1722074
Shyama Das, S. M. Idicula
{"title":"使用kmeans -二进制PSO杂交对基因表达数据进行双聚类","authors":"Shyama Das, S. M. Idicula","doi":"10.1145/1722024.1722074","DOIUrl":null,"url":null,"abstract":"Biclustering is a very useful data mining technique which identifies coherent patterns from microarray gene expression data. A bicluster of a gene expression dataset is a subset of genes which exhibit similar expression patterns along a subset of conditions. Biclustering is a powerful analytical tool for the biologist and has generated considerable interest over the past few decades. The problem of locating the most significant biclusters in gene expression data has shown to be NP complete. In this paper a PSO based algorithm is developed for biclustering gene expression data. This algorithm has three steps. In the first step high quality bicluster seeds are generated using KMeans clustering algorithm. From these seeds biclusters are generated using particle swarm optimization. In the third stage an iterative search is performed to check the possibility of adding more genes and conditions within the given threshold value of mean squared residue score. Experimental results on real datasets show that our approach can effectively find high quality biclusters.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"1 1","pages":"43"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722074","citationCount":"3","resultStr":"{\"title\":\"Biclustering gene expression data using KMeans-binary PSO hybrid\",\"authors\":\"Shyama Das, S. M. Idicula\",\"doi\":\"10.1145/1722024.1722074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biclustering is a very useful data mining technique which identifies coherent patterns from microarray gene expression data. A bicluster of a gene expression dataset is a subset of genes which exhibit similar expression patterns along a subset of conditions. Biclustering is a powerful analytical tool for the biologist and has generated considerable interest over the past few decades. The problem of locating the most significant biclusters in gene expression data has shown to be NP complete. In this paper a PSO based algorithm is developed for biclustering gene expression data. This algorithm has three steps. In the first step high quality bicluster seeds are generated using KMeans clustering algorithm. From these seeds biclusters are generated using particle swarm optimization. In the third stage an iterative search is performed to check the possibility of adding more genes and conditions within the given threshold value of mean squared residue score. Experimental results on real datasets show that our approach can effectively find high quality biclusters.\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":\"1 1\",\"pages\":\"43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/1722024.1722074\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1722024.1722074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1722024.1722074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

摘要

双聚类是一种非常有用的数据挖掘技术,可以从微阵列基因表达数据中识别出一致的模式。基因表达数据集的双聚类是沿条件子集表现出相似表达模式的基因子集。对于生物学家来说,双聚类是一种强大的分析工具,在过去的几十年里引起了相当大的兴趣。定位基因表达数据中最重要的双聚类的问题已被证明是NP完全的。本文提出了一种基于粒子群算法的基因表达数据双聚类算法。该算法分为三个步骤。第一步,使用KMeans聚类算法生成高质量的双聚类种子。利用粒子群算法从这些种子中生成双聚类。在第三阶段,进行迭代搜索,以检查在给定的均方残差评分阈值内添加更多基因和条件的可能性。在真实数据集上的实验结果表明,该方法可以有效地找到高质量的双聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biclustering gene expression data using KMeans-binary PSO hybrid
Biclustering is a very useful data mining technique which identifies coherent patterns from microarray gene expression data. A bicluster of a gene expression dataset is a subset of genes which exhibit similar expression patterns along a subset of conditions. Biclustering is a powerful analytical tool for the biologist and has generated considerable interest over the past few decades. The problem of locating the most significant biclusters in gene expression data has shown to be NP complete. In this paper a PSO based algorithm is developed for biclustering gene expression data. This algorithm has three steps. In the first step high quality bicluster seeds are generated using KMeans clustering algorithm. From these seeds biclusters are generated using particle swarm optimization. In the third stage an iterative search is performed to check the possibility of adding more genes and conditions within the given threshold value of mean squared residue score. Experimental results on real datasets show that our approach can effectively find high quality biclusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
In Silico Biology
In Silico Biology Computer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.
期刊最新文献
Modelling speciation: Problems and implications. Where Do CABs Exist? Verification of a specific region containing concave Actin Bundles (CABs) in a 3-Dimensional confocal image. scAN1.0: A reproducible and standardized pipeline for processing 10X single cell RNAseq data. Modeling and characterization of inter-individual variability in CD8 T cell responses in mice. Cancer immunoediting: A game theoretical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1