{"title":"GPUfs:文件系统与图形处理器集成","authors":"M. Silberstein, B. Ford, I. Keidar, E. Witchel","doi":"10.1145/2451116.2451169","DOIUrl":null,"url":null,"abstract":"PU hardware is becoming increasingly general purpose, quickly outgrowing the traditional but constrained GPU-as-coprocessor programming model. To make GPUs easier to program and easier to integrate with existing systems, we propose making the host's file system directly accessible from GPU code. GPUfs provides a POSIX-like API for GPU programs, exploits GPU parallelism for efficiency, and optimizes GPU file access by extending the buffer cache into GPU memory. Our experiments, based on a set of real benchmarks adopted to use our file system, demonstrate the feasibility and benefits of our approach. For example, we demonstrate a simple self-contained GPU program which searches for a set of strings in the entire tree of Linux kernel source files over seven times faster than an eight-core CPU run.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"32 1","pages":"1-31"},"PeriodicalIF":2.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2451116.2451169","citationCount":"69","resultStr":"{\"title\":\"GPUfs: integrating a file system with GPUs\",\"authors\":\"M. Silberstein, B. Ford, I. Keidar, E. Witchel\",\"doi\":\"10.1145/2451116.2451169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PU hardware is becoming increasingly general purpose, quickly outgrowing the traditional but constrained GPU-as-coprocessor programming model. To make GPUs easier to program and easier to integrate with existing systems, we propose making the host's file system directly accessible from GPU code. GPUfs provides a POSIX-like API for GPU programs, exploits GPU parallelism for efficiency, and optimizes GPU file access by extending the buffer cache into GPU memory. Our experiments, based on a set of real benchmarks adopted to use our file system, demonstrate the feasibility and benefits of our approach. For example, we demonstrate a simple self-contained GPU program which searches for a set of strings in the entire tree of Linux kernel source files over seven times faster than an eight-core CPU run.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"32 1\",\"pages\":\"1-31\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2451116.2451169\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2451116.2451169\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2451116.2451169","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
PU hardware is becoming increasingly general purpose, quickly outgrowing the traditional but constrained GPU-as-coprocessor programming model. To make GPUs easier to program and easier to integrate with existing systems, we propose making the host's file system directly accessible from GPU code. GPUfs provides a POSIX-like API for GPU programs, exploits GPU parallelism for efficiency, and optimizes GPU file access by extending the buffer cache into GPU memory. Our experiments, based on a set of real benchmarks adopted to use our file system, demonstrate the feasibility and benefits of our approach. For example, we demonstrate a simple self-contained GPU program which searches for a set of strings in the entire tree of Linux kernel source files over seven times faster than an eight-core CPU run.
期刊介绍:
ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized.
TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.