{"title":"席夫碱手性Zn(II)和Ni(II)配合物诱导Cu(II)手性的条件研究","authors":"T. Akitsu, J. Yamaguchi, N. Uchida, Y. Aritake","doi":"10.1155/2009/484172","DOIUrl":null,"url":null,"abstract":"Recently, we have discovered that some chiral Schiff-base nickel(II) complexes induced d-d bands of CD spectra of some achiral copper(II) complexes. However, the novel phenomenon could be observed only a few systems of hybrid materials or limited conditions so far. In order to test conditions about copper(II) ions, we investigated model systems (1) metal-dendrimer (Cu-PAMAM; G4-NH2 terminal) containing relatively small amount of copper(II) ions (4.5 equivalent to PAMAM) for modeling separated systems of achiral copper(II) complex from chiral Schiff-base nickel(II) or zinc(II) complexes, Bis(𝑁-𝑅-1-naphtylethyl-3,5-dichlorosalicydenaminato)nickel(II) or zinc(II) by polymer matrix. (2) equilibrium of copper(II) 𝑁-ethylethylenediamine complexes to measure absorption spectra of d-d band, pH, and electron conductivity during titration of copper(II) ions. The results showed that (1) 4.5Cu-PAMAM could not be induced their d-d bands by the chiral nickel(II) or zinc(II) complexes, which suggested that separation by polymers prevented from inducing CD peaks. (2) Although 36Cu-PAMAM was known, uncoordinated copper(II) ions excess to ligands mainly attributed to increase electron conductivity by remained ions in methanol solutions, which was not associated with intermolecular interaction or dipole moments being effective for the induced CD mechanism by using molecular recognition between neutral molecules of metal complexes.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"2009 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2009/484172","citationCount":"5","resultStr":"{\"title\":\"The Studies of Conditions for Inducing Chirality to Cu(II) Complexes by Chiral Zn(II) and Ni(II) Complexes with Schiff Base\",\"authors\":\"T. Akitsu, J. Yamaguchi, N. Uchida, Y. Aritake\",\"doi\":\"10.1155/2009/484172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, we have discovered that some chiral Schiff-base nickel(II) complexes induced d-d bands of CD spectra of some achiral copper(II) complexes. However, the novel phenomenon could be observed only a few systems of hybrid materials or limited conditions so far. In order to test conditions about copper(II) ions, we investigated model systems (1) metal-dendrimer (Cu-PAMAM; G4-NH2 terminal) containing relatively small amount of copper(II) ions (4.5 equivalent to PAMAM) for modeling separated systems of achiral copper(II) complex from chiral Schiff-base nickel(II) or zinc(II) complexes, Bis(𝑁-𝑅-1-naphtylethyl-3,5-dichlorosalicydenaminato)nickel(II) or zinc(II) by polymer matrix. (2) equilibrium of copper(II) 𝑁-ethylethylenediamine complexes to measure absorption spectra of d-d band, pH, and electron conductivity during titration of copper(II) ions. The results showed that (1) 4.5Cu-PAMAM could not be induced their d-d bands by the chiral nickel(II) or zinc(II) complexes, which suggested that separation by polymers prevented from inducing CD peaks. (2) Although 36Cu-PAMAM was known, uncoordinated copper(II) ions excess to ligands mainly attributed to increase electron conductivity by remained ions in methanol solutions, which was not associated with intermolecular interaction or dipole moments being effective for the induced CD mechanism by using molecular recognition between neutral molecules of metal complexes.\",\"PeriodicalId\":7345,\"journal\":{\"name\":\"Advances in Materials Science and Engineering\",\"volume\":\"2009 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2009/484172\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2009/484172\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2009/484172","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
The Studies of Conditions for Inducing Chirality to Cu(II) Complexes by Chiral Zn(II) and Ni(II) Complexes with Schiff Base
Recently, we have discovered that some chiral Schiff-base nickel(II) complexes induced d-d bands of CD spectra of some achiral copper(II) complexes. However, the novel phenomenon could be observed only a few systems of hybrid materials or limited conditions so far. In order to test conditions about copper(II) ions, we investigated model systems (1) metal-dendrimer (Cu-PAMAM; G4-NH2 terminal) containing relatively small amount of copper(II) ions (4.5 equivalent to PAMAM) for modeling separated systems of achiral copper(II) complex from chiral Schiff-base nickel(II) or zinc(II) complexes, Bis(𝑁-𝑅-1-naphtylethyl-3,5-dichlorosalicydenaminato)nickel(II) or zinc(II) by polymer matrix. (2) equilibrium of copper(II) 𝑁-ethylethylenediamine complexes to measure absorption spectra of d-d band, pH, and electron conductivity during titration of copper(II) ions. The results showed that (1) 4.5Cu-PAMAM could not be induced their d-d bands by the chiral nickel(II) or zinc(II) complexes, which suggested that separation by polymers prevented from inducing CD peaks. (2) Although 36Cu-PAMAM was known, uncoordinated copper(II) ions excess to ligands mainly attributed to increase electron conductivity by remained ions in methanol solutions, which was not associated with intermolecular interaction or dipole moments being effective for the induced CD mechanism by using molecular recognition between neutral molecules of metal complexes.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)