c4光合作用的分子工程。

M. Matsuoka, R. Furbank, H. Fukayama, M. Miyao
{"title":"c4光合作用的分子工程。","authors":"M. Matsuoka, R. Furbank, H. Fukayama, M. Miyao","doi":"10.1146/ANNUREV.ARPLANT.52.1.297","DOIUrl":null,"url":null,"abstract":"The majority of terrestrial plants, including many important crops such as rice, wheat, soybean, and potato, are classified as C3 plants that assimilate atmospheric CO2 directly through the C3 photosynthetic pathway. C4 plants such as maize and sugarcane evolved from C3 plants, acquiring the C4 photosynthetic pathway to achieve high photosynthetic performance and high water- and nitrogen-use efficiencies. The recent application of recombinant DNA technology has made considerable progress in the molecular engineering of C4 photosynthesis over the past several years. It has deepened our understanding of the mechanism of C4 photosynthesis and provided valuable information as to the evolution of the C4 photosynthetic genes. It also has enabled us to express enzymes involved in the C4 pathway at high levels and in desired locations in the leaves of C3 plants for engineering of primary carbon metabolism.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"297-314"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.297","citationCount":"223","resultStr":"{\"title\":\"MOLECULAR ENGINEERING OF C4 PHOTOSYNTHESIS.\",\"authors\":\"M. Matsuoka, R. Furbank, H. Fukayama, M. Miyao\",\"doi\":\"10.1146/ANNUREV.ARPLANT.52.1.297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of terrestrial plants, including many important crops such as rice, wheat, soybean, and potato, are classified as C3 plants that assimilate atmospheric CO2 directly through the C3 photosynthetic pathway. C4 plants such as maize and sugarcane evolved from C3 plants, acquiring the C4 photosynthetic pathway to achieve high photosynthetic performance and high water- and nitrogen-use efficiencies. The recent application of recombinant DNA technology has made considerable progress in the molecular engineering of C4 photosynthesis over the past several years. It has deepened our understanding of the mechanism of C4 photosynthesis and provided valuable information as to the evolution of the C4 photosynthetic genes. It also has enabled us to express enzymes involved in the C4 pathway at high levels and in desired locations in the leaves of C3 plants for engineering of primary carbon metabolism.\",\"PeriodicalId\":80493,\"journal\":{\"name\":\"Annual review of plant physiology and plant molecular biology\",\"volume\":\"52 1\",\"pages\":\"297-314\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.297\",\"citationCount\":\"223\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant physiology and plant molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 223

摘要

大多数陆生植物,包括许多重要的作物,如水稻、小麦、大豆和马铃薯,都被归类为C3植物,它们通过C3光合作用途径直接吸收大气中的二氧化碳。C4植物如玉米和甘蔗由C3植物进化而来,通过C4光合途径获得高光合性能和高水氮利用效率。近年来,重组DNA技术在C4光合作用分子工程中的应用取得了长足的进展。它加深了我们对C4光合作用机理的认识,为C4光合作用基因的进化提供了有价值的信息。它还使我们能够在C3植物叶片的所需位置高水平表达参与C4途径的酶,以进行初级碳代谢工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOLECULAR ENGINEERING OF C4 PHOTOSYNTHESIS.
The majority of terrestrial plants, including many important crops such as rice, wheat, soybean, and potato, are classified as C3 plants that assimilate atmospheric CO2 directly through the C3 photosynthetic pathway. C4 plants such as maize and sugarcane evolved from C3 plants, acquiring the C4 photosynthetic pathway to achieve high photosynthetic performance and high water- and nitrogen-use efficiencies. The recent application of recombinant DNA technology has made considerable progress in the molecular engineering of C4 photosynthesis over the past several years. It has deepened our understanding of the mechanism of C4 photosynthesis and provided valuable information as to the evolution of the C4 photosynthetic genes. It also has enabled us to express enzymes involved in the C4 pathway at high levels and in desired locations in the leaves of C3 plants for engineering of primary carbon metabolism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CIRCADIAN RHYTHMS IN PLANTS. MOLECULAR ENGINEERING OF C4 PHOTOSYNTHESIS. ISOPRENE EMISSION FROM PLANTS. CHLAMYDOMONAS AS A MODEL ORGANISM. THE PLASTID DIVISION MACHINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1