电子与空穴光电流对Wz-GaN达通雪崩光电二极管光电特性的影响

Q3 Engineering Advances in Optoelectronics Pub Date : 2013-03-25 DOI:10.1155/2013/840931
M. Ghosh, Mangolika Mondal, A. Acharyya
{"title":"电子与空穴光电流对Wz-GaN达通雪崩光电二极管光电特性的影响","authors":"M. Ghosh, Mangolika Mondal, A. Acharyya","doi":"10.1155/2013/840931","DOIUrl":null,"url":null,"abstract":"The authors have made an attempt to investigate the effect of electron versus hole photocurrent on the optoelectric properties of structured Wurtzite-GaN (Wz-GaN) reach-through avalanche photodiodes (RAPDs). The photo responsivity and optical gain of the devices are obtained within the wavelength range of 300 to 450 nm using a novel modeling and simulation technique developed by the authors. Two optical illumination configurations of the device such as Top Mounted (TM) and Flip Chip (FC) are considered for the present study to investigate the optoelectric performance of the device separately due to electron dominated and hole dominated photocurrents, respectively, in the visible-blind ultraviolet (UV) spectrum. The results show that the peak unity gain responsivity and corresponding optical gain of the device are 555.78 mA W−1 and , respectively, due to hole dominated photocurrent (i.e., in FC structure); while those are 480.56 mA W−1 and , respectively, due to electron dominated photocurrent (i.e., in TM structure) at the wavelength of 365 nm and for applied reverse bias of 85 V. Thus, better optoelectric performance of Wz-GaN RAPDs can be achieved when the photocurrent is made hole dominated by allowing the UV light to be shined on the -layer instead of -layer of the device.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2013 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/840931","citationCount":"4","resultStr":"{\"title\":\"The Effect of Electron versus Hole Photocurrent on Optoelectric Properties of Wz-GaN Reach-Through Avalanche Photodiodes\",\"authors\":\"M. Ghosh, Mangolika Mondal, A. Acharyya\",\"doi\":\"10.1155/2013/840931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors have made an attempt to investigate the effect of electron versus hole photocurrent on the optoelectric properties of structured Wurtzite-GaN (Wz-GaN) reach-through avalanche photodiodes (RAPDs). The photo responsivity and optical gain of the devices are obtained within the wavelength range of 300 to 450 nm using a novel modeling and simulation technique developed by the authors. Two optical illumination configurations of the device such as Top Mounted (TM) and Flip Chip (FC) are considered for the present study to investigate the optoelectric performance of the device separately due to electron dominated and hole dominated photocurrents, respectively, in the visible-blind ultraviolet (UV) spectrum. The results show that the peak unity gain responsivity and corresponding optical gain of the device are 555.78 mA W−1 and , respectively, due to hole dominated photocurrent (i.e., in FC structure); while those are 480.56 mA W−1 and , respectively, due to electron dominated photocurrent (i.e., in TM structure) at the wavelength of 365 nm and for applied reverse bias of 85 V. Thus, better optoelectric performance of Wz-GaN RAPDs can be achieved when the photocurrent is made hole dominated by allowing the UV light to be shined on the -layer instead of -layer of the device.\",\"PeriodicalId\":7352,\"journal\":{\"name\":\"Advances in Optoelectronics\",\"volume\":\"2013 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/840931\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/840931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/840931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

摘要

作者尝试研究了电子-空穴光电流对结构纤锌矿- gan (Wz-GaN)通达雪崩光电二极管(rapd)光电性能的影响。利用作者开发的一种新颖的建模和仿真技术,在300 ~ 450 nm波长范围内获得了器件的光响应率和光增益。本研究考虑了器件的两种光学照明结构,即Top Mounted (TM)和Flip Chip (FC),分别研究了器件在可见-盲紫外(UV)光谱中电子主导和空穴主导光电流下的光电性能。结果表明,由于空穴主导光电流(即FC结构),器件的峰值单位增益响应率和相应的光学增益分别为555.78 mA W−1和;而在365nm波长下的电子主导光电流(即TM结构)和85v的反向偏压分别为480.56 mA W−1和。因此,当允许紫外光照射在器件的-层上而不是-层上,使光电流占主导时,可以获得更好的Wz-GaN rapd的光电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Electron versus Hole Photocurrent on Optoelectric Properties of Wz-GaN Reach-Through Avalanche Photodiodes
The authors have made an attempt to investigate the effect of electron versus hole photocurrent on the optoelectric properties of structured Wurtzite-GaN (Wz-GaN) reach-through avalanche photodiodes (RAPDs). The photo responsivity and optical gain of the devices are obtained within the wavelength range of 300 to 450 nm using a novel modeling and simulation technique developed by the authors. Two optical illumination configurations of the device such as Top Mounted (TM) and Flip Chip (FC) are considered for the present study to investigate the optoelectric performance of the device separately due to electron dominated and hole dominated photocurrents, respectively, in the visible-blind ultraviolet (UV) spectrum. The results show that the peak unity gain responsivity and corresponding optical gain of the device are 555.78 mA W−1 and , respectively, due to hole dominated photocurrent (i.e., in FC structure); while those are 480.56 mA W−1 and , respectively, due to electron dominated photocurrent (i.e., in TM structure) at the wavelength of 365 nm and for applied reverse bias of 85 V. Thus, better optoelectric performance of Wz-GaN RAPDs can be achieved when the photocurrent is made hole dominated by allowing the UV light to be shined on the -layer instead of -layer of the device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Optoelectronics
Advances in Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.
期刊最新文献
Impact of the Four-Sideband and Two-Sideband Theories in Designing of Fiber Optical Parametric Amplifiers 1D Confocal Broad Area Semiconductor Lasers (Confocal BALs) for Fundamental Transverse Mode Selection (TMS#0) Application of M Sequence Family Measurement Matrix in Streak Camera Imaging 1 ML Wetting Layer upon Ga(As)Sb Quantum Dot (QD) Formation on GaAs Substrate Monitored with Reflectance Anisotropy Spectroscopy (RAS) A Practical Method to Design Reflector-Based Light-Emitting Diode Luminaire for General Lighting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1