L. Alekseyev, V. Podolskiy, V. Podolskiy, E. Narimanov
{"title":"太赫兹和远红外频率的齐次双曲系统","authors":"L. Alekseyev, V. Podolskiy, V. Podolskiy, E. Narimanov","doi":"10.1155/2012/267564","DOIUrl":null,"url":null,"abstract":"We demonstrate that homogeneous naturally-occurring materials can form hyperbolic media, and can be used for nonmagnetic negative refractive index systems. We present specific realizations of the proposed approach for the THz and far-IR frequencies. The proposed structures operate away from resonance, thereby promising the capacity for low-loss devices.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2012 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/267564","citationCount":"50","resultStr":"{\"title\":\"Homogeneous Hyperbolic Systems for Terahertz and Far-Infrared Frequencies\",\"authors\":\"L. Alekseyev, V. Podolskiy, V. Podolskiy, E. Narimanov\",\"doi\":\"10.1155/2012/267564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate that homogeneous naturally-occurring materials can form hyperbolic media, and can be used for nonmagnetic negative refractive index systems. We present specific realizations of the proposed approach for the THz and far-IR frequencies. The proposed structures operate away from resonance, thereby promising the capacity for low-loss devices.\",\"PeriodicalId\":7352,\"journal\":{\"name\":\"Advances in Optoelectronics\",\"volume\":\"2012 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/267564\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/267564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/267564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Homogeneous Hyperbolic Systems for Terahertz and Far-Infrared Frequencies
We demonstrate that homogeneous naturally-occurring materials can form hyperbolic media, and can be used for nonmagnetic negative refractive index systems. We present specific realizations of the proposed approach for the THz and far-IR frequencies. The proposed structures operate away from resonance, thereby promising the capacity for low-loss devices.
期刊介绍:
Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.