用分层张量格式对高维百慕大期权进行定价

IF 1.4 4区 经济学 Q3 BUSINESS, FINANCE SIAM Journal on Financial Mathematics Pub Date : 2021-03-02 DOI:10.1137/21m1402170
Christian Bayer, M. Eigel, Leon Sallandt, Philipp Trunschke
{"title":"用分层张量格式对高维百慕大期权进行定价","authors":"Christian Bayer, M. Eigel, Leon Sallandt, Philipp Trunschke","doi":"10.1137/21m1402170","DOIUrl":null,"url":null,"abstract":"An efficient compression technique based on hierarchical tensors for popular option pricing methods is presented. It is shown that the\"curse of dimensionality\"can be alleviated for the computation of Bermudan option prices with the Monte Carlo least-squares approach as well as the dual martingale method, both using high-dimensional tensorized polynomial expansions. This discretization allows for a simple and computationally cheap evaluation of conditional expectations. Complexity estimates are provided as well as a description of the optimization procedures in the tensor train format. Numerical experiments illustrate the favourable accuracy of the proposed methods. The dynamical programming method yields results comparable to recent Neural Network based methods.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"abs/2103.01934 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Pricing high-dimensional Bermudan options with hierarchical tensor formats\",\"authors\":\"Christian Bayer, M. Eigel, Leon Sallandt, Philipp Trunschke\",\"doi\":\"10.1137/21m1402170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient compression technique based on hierarchical tensors for popular option pricing methods is presented. It is shown that the\\\"curse of dimensionality\\\"can be alleviated for the computation of Bermudan option prices with the Monte Carlo least-squares approach as well as the dual martingale method, both using high-dimensional tensorized polynomial expansions. This discretization allows for a simple and computationally cheap evaluation of conditional expectations. Complexity estimates are provided as well as a description of the optimization procedures in the tensor train format. Numerical experiments illustrate the favourable accuracy of the proposed methods. The dynamical programming method yields results comparable to recent Neural Network based methods.\",\"PeriodicalId\":48880,\"journal\":{\"name\":\"SIAM Journal on Financial Mathematics\",\"volume\":\"abs/2103.01934 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Financial Mathematics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1402170\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/21m1402170","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 10

摘要

针对目前流行的期权定价方法,提出了一种基于层次张量的有效压缩技术。研究表明,蒙特卡洛最小二乘法和对偶鞅方法均采用高维张紧多项式展开,可以缓解百慕大期权价格计算的“维数诅咒”。这种离散化允许对条件期望进行简单且计算成本低廉的评估。复杂性估计提供以及在张量列车格式的优化过程的描述。数值实验表明,所提方法具有良好的精度。动态规划方法的结果可与最近基于神经网络的方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pricing high-dimensional Bermudan options with hierarchical tensor formats
An efficient compression technique based on hierarchical tensors for popular option pricing methods is presented. It is shown that the"curse of dimensionality"can be alleviated for the computation of Bermudan option prices with the Monte Carlo least-squares approach as well as the dual martingale method, both using high-dimensional tensorized polynomial expansions. This discretization allows for a simple and computationally cheap evaluation of conditional expectations. Complexity estimates are provided as well as a description of the optimization procedures in the tensor train format. Numerical experiments illustrate the favourable accuracy of the proposed methods. The dynamical programming method yields results comparable to recent Neural Network based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.30
自引率
10.00%
发文量
52
期刊介绍: SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.
期刊最新文献
A Mean Field Game Approach to Bitcoin Mining Decentralized Finance and Automated Market Making: Predictable Loss and Optimal Liquidity Provision A Two-Person Zero-Sum Game Approach for a Retirement Decision with Borrowing Constraints Option Pricing in Sandwiched Volterra Volatility Model Reconciling Rough Volatility with Jumps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1